, Volume 46, Issue 4, pp 434–444

Collisionless Slowing Down of Nova and Supernova Shells in Magnetized Interstellar Medium

  • D. A. Osipyan
  • H. B. Nersisyan
  • H. H. Matevosyan


The collisionless interaction of an expanding plasma cloud with a magnetized background plasma is examined in the framework of a 3D kinetic-hydrodynamic model. The slowing down of a hydrogen cloud is studied for high Alfven-Mach numbers and magneto-laminar interaction parameters. A particle-in-cell method is used to study the dynamics of the magnetic field, plasma cloud, background plasma, and collisionless shock wave generated by the intense particle flux. A numerical simulation is consistent with the nonstationary interactions between the plasma shells formed during nova and supernova explosions and the interstellar plasma medium.

novae stars supernovae stars ISM magnetic fields 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Ponomarenko, ed., Physics of Cosmic and Laboratory Plasmas [in Russian], Nauka, Novosibirsk, SO AN SSSR (1989).Google Scholar
  2. 2.
    V. V. Adushkin, Yu. I. Zetser, Yu. N. Kisilev et al., DAN 331, 486 (1993).Google Scholar
  3. 3.
    Yu. P. Zakharov, A. M. Orishich, and A. G. Ponomarenko, Laser Plasmas and Laboratory Simulation of Nonstationary Processes in Outer Space [in Russian], Novosibirsk, ITPM SO AN SSSR (1988).Google Scholar
  4. 4.
    R. Z. Sagdeev, Cooperative processes and shock waves in rarefied plasmas, in: M. A. Leontovich, ed., Reviews of Plasma Physics, Vol. 4, Consultants Bureau, New York (1966), pp. 23-91.Google Scholar
  5. 5.
    M. M. Leroy, Phys. Fluids 26, 2742 (1983).Google Scholar
  6. 6.
    V. A. Vshivkov, G. I. Dudnikova, Yu. I. Molorodov, and M. P. Fedoruk, Vych. Tekhnologii 2, 5 (1997).Google Scholar
  7. 7.
    V. S. Imshennik, in: K. V. Brushlinksii, ed., Two-dimensional Numerical Models of Plasmas [in Russian], IPM im. M. V. Keldysha AN SSSR, Moscow (1979), p. 120.Google Scholar
  8. 8.
    A. G. Sgro and C. W. Nielsen, Phys. Fluids 19, 126 (1976).Google Scholar
  9. 9.
    B. A. Bryunetkin, U. Sh. Begimkulov, V. M. Dyakin et al., Kvantovaya Elektronika 19, 246 (1992).Google Scholar
  10. 10.
    T. A. Lozinskaya, Supernova Stars and the Stellar Wind. Interaction with the Galactic Gas [in Russian] (1986).Google Scholar
  11. 11.
    J. H. Oort, Mon. Notic. Roy. Astron. Soc. 106, 159 (1946).Google Scholar
  12. 12.
    I. S. Shklovskii, Supernova Stars and Processes associated with them [in Russian], Nauka, Moscow (1976).Google Scholar
  13. 13.
    Yu. P. Raizer, PMTF, No. 6, 19 (1963).Google Scholar
  14. 14.
    A. I. Golubev, A. A. Solov'ev, and V. A. Terekhin, PMTF, No. 5, 33 (1978).Google Scholar
  15. 15.
    V. P. Bashurin, A. I. Golubev, and V. A. Terekhin, PMTF, No. 5, 10 (1983).Google Scholar
  16. 16.
    V. A. Vshivkov, G. I. Dudnikova, Yu. P. Zakharov, A. M. Orishich, and A. G. Ponomarenko, A study of collisionless interaction processes between a plasma cloud and a magnetized background at high Alfven-Mach numbers. Physics of cosmic and laboratory plasmas [in Russian], Novosibirsk (1989).Google Scholar
  17. 17.
    Yu. A. Berezin, M. P. Fedoruk, and P. V. Khenkin, Fizika Plazmy 14, 463 (1988).Google Scholar
  18. 18.
    S. T. Surzhikov, Fizika Plazmy 26, 811 (2000).Google Scholar
  19. 19.
    D. W. Koopman, Phys. Fluids 11 (1959 (1972).Google Scholar
  20. 20.
    Yu. A. Brezin, V. A. Vshivkov, Yu. P. Zakharov et al., Experimental and numerical study of a collisionless ambipolar mechanism for the interaction of plasma flows in the absence of a magnetic field [in Russian], ITPM SO AN SSSR, Preprint No. 7-86, Novosibirsk (1986).Google Scholar
  21. 21.
    C. S. Wu, D. Winske, Y. M. Zhou et al., Space Sci. Rev. 36, 63 (1983).Google Scholar
  22. 22.
    K. Papadopoulos, J. Geophys. Res. 14, 3806 (1971).Google Scholar
  23. 23.
    Yu. A. Berezin, V. A. Vshivkov, G. I. Dudnikova, and M. P. Fedoruk, Fizika Plazmy 18, 1567 (1992).Google Scholar
  24. 24.
    Yu. A. Berezin and V. A. Vshivkov, Particle-in-cell Methods in Rarefied Plasma Dynamics [in Russian] Nauka, Novosibirsk (1980).Google Scholar
  25. 25.
    Yu. A. Berezin and M. P. Fedoruk, Mathematical Modelling of Nonstationary Plasma Processes [in Russian], Nauka, Novosibirsk (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • D. A. Osipyan
    • 1
  • H. B. Nersisyan
    • 1
  • H. H. Matevosyan
    • 1
  1. 1.Institute of Radio Physics and ElectronicsNational Academy of Sciences of ArmeniaArmenia

Personalised recommendations