Astrophysics and Space Science

, Volume 288, Issue 4, pp 313–325

The Sun's Distance from the Galactic Plane

  • R.L. BranhamJr.
Article
  • 59 Downloads

Abstract

Use is made of 93,106 parallaxes from the Hipparcos catalog, with a mixture of spectrum-luminosity classes, to derive the position of the Galactic plane. The reduction technique, mixed total least squares-least squares, takes into account the errors in the parallaxes, and the condition that the direction cosines of the Galactic pole have unit Euclidean norm is rigorously enforced. To obtain an acceptable solution it is necessary to eliminate the stars of classes O and B that belong to the Gould belt. The Sun is found to lie 34.56±0.56 pc above the plane. The coordinates of the Galactic pole, lg,bg, are found to be: lg=0.°004±0.°039;bg=89.°427±0.°035.This agrees well with what radio observations find and demonstrates that the IAU's recommendation in 1960 to use only radio observations to determine the Galactic pole, although correct at the time because of the paucity of optical observations, can no longer be justified given the plethora of observations contained in the Hipparcos catalog and an adequate reduction technique, unavailable in 1960. The reduction technique is also demonstrably superior to others because it involves fewer assumptions and calculates smaller mean errors.

data reduction Galactic plane total least squares 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blaauw, A.: 1960, Mon. Not. R. Astron. Soc. 121, 164.ADSGoogle Scholar
  2. Branham, R.L. Jr.: 1986, Celest. Mech. 39, 239.MathSciNetCrossRefADSGoogle Scholar
  3. Branham, R.L. Jr.: 1990, Scientific Data Analysis, Springer, New York, Sec. 6.1, Sec. 7.2, pp. 79–80.Google Scholar
  4. Branham, R.L. Jr.: 2000, Rev. Mex. A&A 36, 97.ADSGoogle Scholar
  5. Chauvenet, W.: 1960, A Maual of Spherical and Practical Astronomy, Vol. II, Dover, New York, pp. 564–566.Google Scholar
  6. ESA: 1997, The Hipparcos and Tycho Catalogues, ESA SP-1200.Google Scholar
  7. Golub, G. and Van Loan, C.F.: 1983, Matrix Computations, Johns Hopkins, Baltimore, Sec. 2.3.Google Scholar
  8. Gum, C.S., Kerr, F.J. and Westerhout, G.: 1960, Mon. Not. R. Astron. Soc. 121, 132.ADSGoogle Scholar
  9. Høg, E., Fabricius, C., Markarov, V.V., Urban, S., Corbin, T., Wycoff, G., Bastian, U., Schwenkendlek, P. and Wicenec, A.: 2000, The Tycho-2 Catalogue, U.S. Naval Observatory, Washington, D.C.Google Scholar
  10. Humphreys, R.M. and Larsen, J.A.: 1995, Astron. J. 110, 2183.CrossRefADSGoogle Scholar
  11. Kurth, R.: 1967, Introduction to Stellar Statistics, Pergamon, Oxford, pp. 1–2.Google Scholar
  12. Land, A.P.: 1979, PASP 91, 405.CrossRefADSGoogle Scholar
  13. Meyer, C.D.: 2000, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, p. 61.Google Scholar
  14. Rice, H.L.: 1902, Astron. J. 22, 149.CrossRefADSGoogle Scholar
  15. Smith, H. Jr. and Eichhorn, H.: 1996, Mon. Not. R. Astron. Soc. 281, 211.ADSGoogle Scholar
  16. Strobie, R. and Ishida, K.: 1987, Astron. J. 93, 624.CrossRefADSGoogle Scholar
  17. Strothers, R. and Frogel, J.A.: 1974, Astron. J. 79, 456.CrossRefADSGoogle Scholar
  18. Trumpler, R.J. and Weaver, H.: 1962, Statistical Astronomy, Dover, New York, p. 182, Sec. 5.13.Google Scholar
  19. Van Huffel, S. and Vandewalle, J.: 1991, The Total Least Squares Problem: Computational Aspects and Analysis, SIAM, Philadelphia, Sec. 3.6.2, pp. 270–275, Sec. 9.3.Google Scholar
  20. van Tulder, J.J.M.: 1942, BAN 9, 315.ADSGoogle Scholar
  21. Wonnacott, T.H. and Wonnacott, R.J.: 1972, Introductory Statistics, 2nd. Ed., Wiley, New York, pp. 409–411.Google Scholar
  22. Yamagata, T. and Yoshi, Y.: 1992, Astron. J. 103, 117.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • R.L. BranhamJr.
    • 1
  1. 1.CRICYTMendozaArgentina

Personalised recommendations