Apoptosis

, Volume 9, Issue 4, pp 501–508 | Cite as

GRP94 reduces cell death in SH-SY5Y cells perturbated calcium homeostasis

  • Y. Bando
  • T. Katayama
  • A. N. Aleshin
  • T. Manabe
  • M. Tohyama
Article

Abstract

The endoplasmic reticulum (ER) resident—94 kDa glucose-regulated protein (GRP94), plays a pivotal role in cell death due to ER stress. In our study expression of GRP94 was increased in human neuroblastoma SH-SY5Y cells due to exposure to calcium ionophore A23187. A23187-mediated cell death was associated with activation of the major cysteine proteases, caspase-3 and calpain. Pretreatment with adenovirus-mediated antisense GRP94 (AdGRP94AS) reduced viability of SH-SY5Y cells subjected to A23187 treatment compared with wild type cells or cells with adenovirus-mediated overexpression of GRP94 (AdGRP94S). These results indicated that suppression of GRP94 is associated with accelerated cell death. Moreover, expression of GRP94 suppressed A23187-induced cell death and stabilized calcium homeostasis.

calcium homeostasis endoplasmic reticulum molecular chaperone neuronal cell death 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chang RCC, Suen KC, Ma CH, et al. Involvement of double-stranded RNA-dependent protein kinase and phosphorylation of eukaryotic initiation factor-2alpha in neuronal degeneration. J Neurochem 2002; 83: 1215–1225.PubMedGoogle Scholar
  2. 2.
    Yu ZF, Luo H, Fu W, Mattson MP. The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: Suppression of oxidative stress and stabilization of calcium homeostasis. Exp Neurology 1999; 155: 302–314.Google Scholar
  3. 3.
    Reimertz C, Kogel D, Lankiewicz S, Poppe M, Prehn JHM. Ca2+-induced inhibition of apoptosis in human SH-SY5Y neuroblastoma cells: Degradation of apoptotic protease activating factor-1 (APAF-1). J Neurochem 2001; 78: 1256–1266.PubMedGoogle Scholar
  4. 4.
    MacGinnis KM, Gnegy ME, Park YH, Mukerjee N, Wang KKW. Procaspase-3 and poly (ADP) ribose polymerase (PARP) are calpain substrates. Biochem Biophys Res Comm 1999; 263: 94–99.PubMedGoogle Scholar
  5. 5.
    Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 2000; 150(4): 887–894.CrossRefPubMedGoogle Scholar
  6. 6.
    Reddy RK, Lu J, Lee, AS. The endoplasmic reticulum chaper-one glycoprotein GRP94 with Ca(2+)-binding and antiapoptotic properties is a novel proteolytic target of calpain during etoposide-induced apoptosis. J Biol Chem 1999; 274: 28476–28483.PubMedGoogle Scholar
  7. 7.
    Bando Y, Katayama T, Kasai K, et al. GRP94 suppresses ischemic neuronal cell death against ischemia/reperfusion injury. Eur J Neurosci 2003; 18: 829–840.CrossRefPubMedGoogle Scholar
  8. 8.
    Kubbutat MH, Vansden KH. Proteolytic cleavage of human p53 by calpain: A potential regulation of protein stability. Mol Cell Biol 1997; 17: 460–468.PubMedGoogle Scholar
  9. 9.
    Wood DE, Thomas A, Dev LA, et al. Bax cleavage is mediated by calpain during drug-induced apoptosis. Oncogene 1998; 17: 1069–1078.CrossRefPubMedGoogle Scholar
  10. 10.
    Katayama T, Imaizumi K, Sato N, et al. Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nat Cell Biol 1999; 1: 479–485.CrossRefPubMedGoogle Scholar
  11. 11.
    Bando Y, Ogawa S, Yamauchi A, et al. 150-kDa oxygen-regulated protein (ORP150) functions as a novel molecular chaperone in MDCK cells. Am J Physiol Cell Physiol 2000; 278: C1172–C1182.PubMedGoogle Scholar
  12. 12.
    Koch G, Smith M, Macer D, Webstar P, Mortara R. Endoplasmic reticulum contains a common, abundant calcium-binding glycoprotein, endoplasmin. J Cell Sci 1986; 86: 217–232.PubMedGoogle Scholar
  13. 13.
    Rapoport TA. Transport of proteins across the endoplasmic reticulum membrane. Science 1992; 258: 931–936.PubMedGoogle Scholar
  14. 14.
    Berridge MJ. Capacitative calcium entry. Biochem J 1995; 312: 1–11.PubMedGoogle Scholar
  15. 15.
    Lee AS. The glucose-regulated proteins: Stress induction and clinical applications. TRENDS in Biochem Sci 2001; 26: 504–510.Google Scholar
  16. 16.
    Booth C, Koch GLE. Perturbation of cellular calcium induces secretion of luminal ER proteins. Cell 1989; 59: 729–737.PubMedGoogle Scholar
  17. 17.
    Chen L, Gao X. Neuronal apoptosis induced by endoplasmic reticulum stress. Neurochem Res 2002; 27(9): 891–898.PubMedGoogle Scholar
  18. 18.
    Gregory JZ, Jin ML, Dennis WC. Reducing calcium overload in the ischemic brain. The New Eng J Med 1999; 341, 20: 1543–1544.Google Scholar
  19. 19.
    Vitadello M, Penzo D, Petronilli V, et al. Overexpression of the stress protein GRP94 reduces cardiomyocyte necrosis due to calcium overload and simulated ischemia. FASEB J 2003; 17: 923–925.PubMedGoogle Scholar
  20. 20.
    Miyazaki M, Ozawa K, Hori O, et al. Expression of 150-kd oxygen-regulated protein in the hippocampus suppresses delayed neuronal cell death. J Cereb Blood Flow Metab 2002; 22: 979–987.PubMedGoogle Scholar
  21. 21.
    Imai Y, Soda M, Takahashi R. Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem 2000; 275: 35661–35664.PubMedGoogle Scholar
  22. 22.
    Arnaudeau S, Frieden M, Nakamura K, et al. Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria. J Biol Chem 2002; 277(48): 46696–46705.PubMedGoogle Scholar
  23. 23.
    Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G. 90-kDa molecular chaperone family: Structure, function, and clinical applications.Acomprehensive review. Pharmacol Ther 1998; 79: 129–168.PubMedGoogle Scholar
  24. 24.
    Liu H, Miller E, van de Water B, Stevens JL. Endoplasmic reticulum stress proteins block oxidant-induced Ca2+ increases and cell death. J Biol Chem 1998; 273: 12858–12862.PubMedGoogle Scholar
  25. 25.
    Tamatani M, Matsuyama T, Yamaguchi A, et al. ORP150 protects against hypoxia/ischemia-induced neuronal death. Nat Med 2001; 7: 317–323.PubMedGoogle Scholar
  26. 26.
    Ohkubo N, Mitsuda N, Tamatani M, et al. Apolipoprotein E4 stimulates cAMP response element-binding protein transcriptional activity through the extracellular signal-regulated kinase pathway. J Biol Chem 2001; 276: 3046–3053.PubMedGoogle Scholar
  27. 27.
    Kanegae Y, Miyake S, Sato Y, Lee G, Saito I. Adenovirus vector technology: An efficient method for constructing recombinant adenovirus and on/off switching of gene expression. Acta Paediatrica Japonica 1996; 38: 182–188.PubMedGoogle Scholar
  28. 28.
    Altznauer F, Simon HU. Calpain is a major regulator of neurotrophils apoptosis. Scientific World Journal 2001; 1(S3): 91.Google Scholar
  29. 29.
    Wood DE, Newcomb EW. Caspase-dependent activation of calpain during drug-induced apoptosis. J Biol Chem 1999; 274: 8309–8315.PubMedGoogle Scholar
  30. 30.
    Choi DW. Calcium and excitotoxic neuronal injury. Ann NY Acad Sci 1994; 747: 162–171.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Y. Bando
    • 1
  • T. Katayama
    • 1
    • 2
  • A. N. Aleshin
    • 3
  • T. Manabe
    • 1
  • M. Tohyama
    • 1
    • 2
  1. 1.Department of Anatomy and NeuroscienceOsaka University Graduate School of MedicineOsaka
  2. 2.Core Research for Evolutional Science and TechnologyJapan Science and Technology (CREST JST)Saitama
  3. 3.Division of Cardiovascular Surgery, Department of SurgeryOsaka University Graduate School of MedicineOsakaJapan

Personalised recommendations