Flow, Turbulence and Combustion

, Volume 72, Issue 2–4, pp 427–448 | Cite as

Measurements of Scalar Variance, Scalar Dissipation, and Length Scales in Turbulent Piloted Methane/Air Jet Flames

  • R.S. BarlowEmail author
  • A.N. Karpetis


One-dimensional (line) measurements of mixture fraction, temperature, and scalar dissipation in piloted turbulent partially premixed methane/air jet flames (Sandia flames C, D, and E) are presented. The experimental facility combines line imaging of Raman scattering, Rayleigh scattering, and laser-induced CO fluorescence. Simultaneous single-shot measurements of temperature and the mass fractions of all the major species (N2, O2, CH4, CO2, H2O, CO, and H2) are obtained along 7 mm segments with a nominal spatial resolution of 0.2 mm. Mixture fraction, ξ, is then calculated from the measured mass fractions. Ensembles of instantaneous mixture fraction profiles at several streamwise locations are analyzed to quantify the effect of spatial averaging on the Favre average scalar variance, which is an important term in the modeling of turbulent nonpremixed flames. Results suggest that the fully resolved scalar variance may be estimated by simple extrapolation of spatially filtered measurements. Differentiation of the instantaneous mixture fraction profiles yields the radial contribution to the scalar dissipation, χ r = 2Dξ(∂ξ/∂r)2, and radial profiles of the Favre mean and rms scalar dissipation are reported. Scalar length scales, based on autocorrelation of the spatial profiles of ξ and χ r , are also reported. These new data on this already well-documented series of flames should be useful in the context of validating models for sub-grid scalar variance and for scalar dissipation in turbulent flames.

turbulent flames mixture fraction scalar dissipation Raman scattering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barlow, R.S. (ed.), The International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames. Sandia National Laboratories (2003) Scholar
  2. 2.
    Barlow, R.S. and Frank, J.H., Effects of turbulence on species mass fractions in methane/air jet flames. Proc. Comb. Inst. 27 (1998) 1087-1095.Google Scholar
  3. 3.
    St° arner, S.H. and Bilger, R.W., Characteristics of a piloted diffusion flame designed for study of combustion turbulence interactions. Combust. Flame 61 (1985) 29-38.Google Scholar
  4. 4.
    Masri, A.R., Dibble, R.W. and Barlow, R.S., The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements. Prog. Energy Combust. Sci. 22 (1996) 307-362.Google Scholar
  5. 5.
    Tang, Q., Xu, J. and Pope, S.B., Probability density function calculations of local extinction and NO production in piloted-jet turbulent methane/air flames. Proc. Comb. Inst. 28 (2000) 133-140.Google Scholar
  6. 6.
    Lindstedt, R.P., Louloudi, S.A. and Vaos, E.M., Joint scalar probability density function model-ing of pollutant formation in piloted turbulent jet diffusion flames with comprehensive chemistry. Proc. Comb. Inst. 28 (2000) 149-156.Google Scholar
  7. 7.
    Pitsch, H. and Steiner, H., Scalar mixing and dissipation rate in large-eddy simulations of non-premixed turbulent combustion. Proc. Comb. Inst. 28 (2000) 41-50.Google Scholar
  8. 8.
    Pitsch, H. and Steiner, H., Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids 12 (2000) 2541-2554.Google Scholar
  9. 9.
    Pitsch, H., Improved pollutant predictions in large-eddy simulations of turbulent non-premixed combustion by considering scalar dissipation rate fluctuations. Proc. Comb. Inst. 29 (2002) 1971-1978.Google Scholar
  10. 10.
    Roomina, M.R. and Bilger, R.W., Conditional moment closure (CMC) predictions of a turbulent methane-air jet flame. Combust. Flame 125 (2001) 1175-1195.Google Scholar
  11. 11.
    Bradley, D., Emerson, D.R., Gaskell, P.H. and Gu, X.J., Mathematical modelling of turbu-lent non-premixed piloted jet flames with local extinctions. Proc. Combust. Inst. 29 (2002) 2155-2162.Google Scholar
  12. 12.
    Echekki, T., Kernstein, A.R., Dreeben, T.D. and Chen, J.-Y., 'One-dimensional turbulence' simulation of turbulent jet diffusion flames: Model formulation and illustrative applications. Combust. Flame 125 (2001) 1083-1105.Google Scholar
  13. 13.
    Landenfeld, T., Sadiki, A. and Janicka, J., A turbulence-chemistry interaction model based on a multivariate presumed beta-pdf method for turbulent flames. Flow Turb. Combust. 68 (2002) 111-135.Google Scholar
  14. 14.
    Schneider, C., Dreizler, A. and Janicka, J., Flow field measurements of stable and locally extin-guishing hydrocarbon-fueled jet flames. Combust. Flame 135 (2003) 185-190.Google Scholar
  15. 15.
    Barlow, R.S. (ed.), Partially premixed laminar flame comparisons. In Barlow, R.S. (ed), Pro-ceedings of the 5th TNF Workshop, Sandia National Laboratories (2000), Scholar
  16. 16.
    Barlow, R.S., Karpetis, A.N., Frank, J.H. and Chen, J.-Y., Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames. Combust. Flame 127 (2001) 2102-2118.Google Scholar
  17. 17.
    Pope, S.B., Mixing model performance in the calculation of nonpremixed piloted jet flames. In: Barlow, R.S. (ed.), Proceedings of the 6th TNF Workshop, Sandia National Laboratories (2002), Scholar
  18. 18.
    Frank, J.H., Barlow, R.S. and Lundquist, C., Radiation and nitric oxide formation in turbulent non-premixed jet flames. Proc. Comb. Inst. 28 (2000) 447-454.Google Scholar
  19. 19.
    Coelho, P.J., Teerling, O.J. and Roekaerts, D., Spectral radiative effects and turbulence/radiation interaction in a non-luminous turbulent jet diffusion flame. Combust. Flame 133 (2003) 75-91.Google Scholar
  20. 20.
    Bilger, R.W., The structure of turbulent diffusion flames. Combust. Sci. Technol. 13 (1976) 155-170.Google Scholar
  21. 21.
    Bilger, R.W., Turbulent jet diffusion flames. Prog. Energy Combust. Sci. 1 (1976) 87-109.Google Scholar
  22. 22.
    Warhaft, Z., Passive scalars in turbulent flows. Ann. Rev. Fluid Mech. 32 (2000) 203-240.Google Scholar
  23. 23.
    Sreenivasan, K.R. and Antonia, R.A., The phenomenology of small-scale turbulence. Ann. Rev. Fluid Mech. 29 (1997) 435-472.Google Scholar
  24. 24.
    Pitts, W.M., Richards, C.D. and Levenson, M.S., Large and small scale structures and their interactions in an axisymmetric jet. NISTIR 6393, NIST, Gathersburg, MD (1999), Scholar
  25. 25.
    Nandula, S.P., Brown, T.M. and Pitz, R.W. Measurements of scalar dissipation in the reaction zones of turbulent nonpremixed H2 air flames, Combust. Flame 99 (1994) 775-783.Google Scholar
  26. 26.
    Chen, Y.-C. and Mansour, M.S., Measurements of scalar dissipation in turbulent hydrogen diffusion flames and some implications on combustion modeling. Combust. Sci. Technol. 126 (1997) 291-313.Google Scholar
  27. 27.
    Brockhinke, A., Haufe, S. and Kohse-HÖinghaus, K., Structural properties of lifted hydrogen jet flames measured by laser spectroscopic techniques. Combust. Flame 121 (2000) 367-377.Google Scholar
  28. 28.
    Nooren, P.A., Versluis, M., van der Meer, T.H., Barlow, R.S. and Frank, J.H., Rayleigh-Raman-LIF measurements of temperature and species concentrations in the Delft piloted turbulent jet diffusion flame. Appl. Phys. B 71 (2000) 95-111.Google Scholar
  29. 29.
    Barlow, R.S. and Miles, P.C., A shutter-based line-imaging system for single-shot Raman scat-tering measurements of gradients in mixture fractions. Proc. Comb. Inst. 28 (2000) 269-278.Google Scholar
  30. 30.
    Meier, W. and Keck, O., Laser Raman scattering in fuel-rich flames: Background levels at different excitation wavelengths. Meas. Sci. Technol. 13 (2002) 741-749.Google Scholar
  31. 31.
    Ebersohl, N., Klos, Th., Suntz, R. and Bockhorn, H., One-dimensional Raman scattering for determination of multipoint joint scalar probability density functions in turbulent diffusion flames. Proc. Comb. Inst. 27 (1998) 997-1006.Google Scholar
  32. 32.
    St° arner, S.H., Bilger, R.W., Long, M.B., Frank, J.H. and Marran, D.F., Scalar dissipation mea-surements in turbulent jet diffusion flames of air diluted methane and hydrogen. Combust. Sci. Technol. 129 (1997) 141-163.Google Scholar
  33. 33.
    Fielding, J., Schaffer, A.M. and Long, M.B., Three-scalar imaging in turbulent non-premixed flames of methane. Proc. Comb. Inst. 27 (1998) 1007-1014.Google Scholar
  34. 34.
    Frank, J.H., Kaiser, S.A. and Long, M.B., Reaction-rate, mixture-fraction, and temperature imaging in turbulent methane/air jet flames. Proc. Comb. Inst. 29 (2003) 2687-2694.Google Scholar
  35. 35.
    Karpetis, A.N. and Barlow, R.S., Measurements of scalar dissipation in a turbulent piloted methane/air jet flame. Proc. Comb. Inst. 29 (2003) 1929-1936.Google Scholar
  36. 36.
    Karpetis, A.N., Settersten, T.B., Schefer, R.W. and Barlow, R.S., Laser imaging system for determination of three-dimensional scalar gradients in turbulent flames. Optics Let. 29 (2004) 355-357.Google Scholar
  37. 37.
    Nguyen, Q.V., Dibble, R.W., Carter, C.D., Fiechtner, G.J. and Barlow, R.S., Raman-LIF mea-surements of temperature, major species, OH, and NO in a methane-air Bunsen flame. Combust. Flame 105 (1996) 499-510.Google Scholar
  38. 38.
    Kojima, J. and Nguyen, Q.-V., Laser pulse-stretching with multiple optical ring cavities. Appl. Opt. 41 (2002) 6360-6370.Google Scholar
  39. 39.
    Miles, P.C. and Barlow, R.S., A fast mechanical shutter for spectroscopic applications. Meas. Sci. Technol. 11 (2000) 392-397.Google Scholar
  40. 40.
    Miles, P.C., Raman line imaging for spatially and temporally resolved mole fraction measure-ments in internal combustion engines. Appl. Opt. 38 (1999) 1714-1732.Google Scholar
  41. 41.
    Settersten, T., Dreizler, A. and Farrow, R.L., Temperature-and species-dependent quenching of CO B probed by two-photon laser-induced fluorescence using a picosecond laser. J. Chem. Phys. 117 (2002) 3173-3179.Google Scholar
  42. 42.
    Meier, W., Barlow, R.S., Chen, Y.L. and Chen, J.-Y., Raman/Rayleigh/LIF measurements in a turbulent CH4/H2/N2 jet diffusion flame: Experimental techniques and turbulence-chemistry interaction. Combust. Flame 123 (2000) 326-343.Google Scholar
  43. 43.
    Bilger, R.W., St° arner, S.H. and Kee, R.J., On reduced mechanisms for methane air combustion in nonpremixed flames. Combust. Flame 80 (1990) 135-149.Google Scholar
  44. 44.
    Barlow, R.S. and Frank, J.H., Piloted CH4/air flames C, D, E and F-Release 2.0. Sandia National Laboratories (2003), Scholar
  45. 45.
    Mansour, M.S., Bilger, R.W. and Dibble, R.W., Spatial-averaging effects in Raman/Rayleigh measurements in a turbulent flame. Combust. Flame 82 (1990) 411-425.Google Scholar
  46. 46.
    Pitsch, H., Large-eddy simulation of a turbulent diffusion flame (Sandia flame D). Stanford University (2003), ∼hpitsch/.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Combustion Research FacilitySandia National LaboratoriesLivermoreU.S.A

Personalised recommendations