Experimental & Applied Acarology

, Volume 34, Issue 3–4, pp 275–290 | Cite as

Mitochondrial DNA and RAPD polymorphisms in the haploid mite Brevipalpus phoenicis (Acari: Tenuipalpidae)

  • J.C.V. Rodrigues
  • M. Gallo-meagher
  • R. Ochoa
  • C.C. Childers
  • B.J. Adams
Article

Abstract

Brevipalpus phoenicis (Geijskes) (Acari: Tenuipalpidae) is recognized as the vector of citrus leprosis virus that is a significant problem in several South American countries. Citrus leprosis has been reported from Florida in the past but no longer occurs on citrus in North America. The disease was recently reported in Central America, suggesting that B. phoenicis constitutes a potential threat to the citrus industries of North America and the Caribbean. Besides B. phoenicis, B. obovatus Donnadieu, and B. californicus (Banks) have been incriminated as vectors of citrus leprosis virus and each species has hundreds of host plants. In this study, Brevipalpus mite specimens were collected from different plants, especially citrus, in the States of Florida (USA) and São Paulo (Brazil), and reared on citrus fruit under standard laboratory conditions. Mites were taken from these colonies for DNA extraction and for morphological species identification. One hundred and two Random Amplified Polymorphic DNA (RAPD) markers were scored along with amplification and sequencing of a mitochondrial cytochrome oxidase subunit I gene fragment (374 bp). Variability among the colonies was detected with consistent congruence between both molecular data sets. The mites from the Florida and Brazilian colonies were morphologically identified as belonging to B. phoenicis, and comprise a monophyletic group. These colonies could be further diagnosed and subdivided geographically by mitochondrial DNA analysis.

Brevipalpus ‘Citrus leprosis virus –CiLV’ Cenopalpus Eutetranychus Phylogenetic relationship 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams B. J. 1998. Species concepts and the evolutionary paradigm in modern nematology. J. Nematol. 30:1–21.PubMedGoogle Scholar
  2. Adams B. J. 2001. The species delimitation uncertainty principle. J. Nematol. 33:153–160.PubMedGoogle Scholar
  3. Baker E. W. 1949. The genus Brevipalpus (Acarina:Pseudoleptidae). Am. Midland Nat. 2:350–402.CrossRefGoogle Scholar
  4. Baker E. W. and Tuttle D. M. 1987. The false spider mites of Mexico (Tenuipalpidae:Acari). USDA ARS Tech Bull, 1706:237 p.Google Scholar
  5. Bajwa W., Krantz G. W. and Kogan M. 2001. Discovery of Cenopalpus pulcher (C. & F. ) (Acari: Tenuipalpidae) in the new world. Proc. Entomol. Soc. Washington. 103:754–756.Google Scholar
  6. Black W. C., Du Teau N. W., Puterka G. J., Nechols J. R. and Pettorini J. M. 1992. Use of the random ampli ed polymerase chain reaction (RAPD-PCR)to detect DNA polymorphisms in aphids (Homoptera:Aphididae). Bull. Entomol. Res. 82:151–159.Google Scholar
  7. Childers C. C., Rodrigues J. C., Kitajima E. W., Derrick K. S., Rivera C. and Welbourn C. W. 2001a. A control strategy for breaking the virus-vector cycle of Brevipalpus spp. and the Rhabdovirus disease,citrus leprosis. Manejo Integrado de Plagas (Costa Rica) 60:76–79.Google Scholar
  8. Childers C. C., Kitajima E. W., Welbourn C. W., Rivera C. and Ochoa R. 2001b. Brevipalpus mites on citrus and their status as vectors of citrus leprosis. Manejo Integrado de Plagas (Costa Rica). 60:66–70.Google Scholar
  9. Childers C. C., Rodrigues J. C. V., Derrick K. S., Achor D. S., French J. V., Welbourn C. W., Ochoa R. and Kitajima E. W. 2003a. The status of citrus leprosis in Florida and Texas:past and present. Exp. Appl. Acarol. 30:181–202.PubMedCrossRefGoogle Scholar
  10. Childers C. C., Rodrigues J. C. V. and Welbourn C. W. 2003b. Host plants of Brevipalpus californicus, B. obovatus, and B. phoenicis (Acari:Tenuipalpidae) and their potential involvement in the spread of one or more viral diseases vectored by these mites. Exp. Appl. Acarol. 30:29–105.PubMedCrossRefGoogle Scholar
  11. Dominguez F. S., Bernal A., Childers C. C. and Kitajima E. W. 2001. First report of citrus leprosis in Panama. Plant Dis. 85:228.Google Scholar
  12. Felsentein J. 1995. PHYLIP:Phylogeny Inference Package, version 3. 75c. Dept. Genetics,Univ. Washington, Seattle.Google Scholar
  13. Figueroa C. C., Simon J. C., Le Gallic J. F. and Niemeyer H. M. 1999. Molecular markers to differentiate two morphologically-close species of the genus Sitobion. Entomol. Exp. Appl. 92:217–225.CrossRefGoogle Scholar
  14. Frost D. R. and Kluge A. G. 1994. A consideration of epistemology in systematic biology,with special reference to species. Cladistics 10:259–294.CrossRefGoogle Scholar
  15. Ghiselin M. T. 1997. Metaphysics and the Origin of Species. State University of New York Press, Albany.Google Scholar
  16. Gonzalez R. H. 1975. Revision of the Brevipalpus phoenicis ‘complex’ with descriptions of new species from Chile and Thailand (Acarina:Tenuipalpidae). Acarologia 17:81–91.Google Scholar
  17. Hall T. A. 1999. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41:95–98.Google Scholar
  18. Jackson L. K. and Davies F. S. 1999. Citrus Growing in Florida, 4th ed. Gainesville, FL.Google Scholar
  19. Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111–120.PubMedCrossRefGoogle Scholar
  20. Kitajima E. W., Chagas C. M. and Rodrigues J. C. V. 2003. Brevipalpus-transmitted plant virus and virus-like diseases:cytopathology and some recent cases. Exp. Appl. Acarol. 30:135–160.PubMedCrossRefGoogle Scholar
  21. Knorr L. C. 1968. Studies on the etiology of leprosis in citrus. Proc. Conf. Intl. Org. Citrus Virol. 4: 332–340.Google Scholar
  22. Krantz G. W. 1978. A Manual of Acarology, 2nd ed. Oregon State Univ. Book Stores,Inc., Corvallis.Google Scholar
  23. Kumar S., Tamura K., Jakobsen I. B. and Nei M. 2001. MEGA2: Molecular Evolutionary Genetics Analysis software. Arizona State Univ., Tempe, AZ, USA.Google Scholar
  24. Maddison W. P. and Maddison D. R. 2002. MacClade Version 4. 0. 5. Sinauer. Sunderland, Massachusetts.Google Scholar
  25. Navajas M. and Fenton B. 2000. The application of molecular markers in the study of diversity in acarology:a review. Exp. Appl. Acarol. 24:751–774.PubMedCrossRefGoogle Scholar
  26. Navajas M., Gutierrez J. and Lagnel J. 1996. Mitochondrial cytochrome oxidase I in tetranychid mites:a comparison between molecular phylogeny and changes of morphological and life history traits. Bull. Entomol. Res. 86:407–417.Google Scholar
  27. Navajas M., Lagnel J., Gutierrez J. and Boursot P. 1998. Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity 80(6):742–752.PubMedCrossRefGoogle Scholar
  28. Orui Y. and Mizukubo T. 1999. Discrimination of seven Pratylenchus species (Nematoda:Pratylenchidae)in Japan by PCR-RFLP analysis. Appl. Entomol. Zool. 34(2):205–211.Google Scholar
  29. Posada D. and Crandall K. A. 1998. Modeltest:testing the model of DNA substitution. Bioinformatics 14(9):817–818.PubMedCrossRefGoogle Scholar
  30. Pritchard A. E. and Baker E. W. 1958. The false spider mites (Acarina:Tenuipalpidae). Univ. Calif. Publ. Entomol. 14(3):175–274.Google Scholar
  31. Reyes A. and Ochando M. D. 1998. Use of molecular markers for detecting the geographical origin of Ceratitis capitata (Diptera:Tephritidae) populations. Ann. Entomol. Soc. Amer. 91(2):222–227.Google Scholar
  32. Rodrigues J. C. V., Moon D. H. and Machado M. A. 1996. Variabilidade genética entre populações de Brevipalpus phoenicis G. (Acari:Tenuipalpidae),através de marcadores RAPD. Braz. J. Genetics 19(3):280. (Abstr. ).Google Scholar
  33. Rodrigues J. C. V., Machado M. A., Kitajima E. W. and Müller G. W. 2000. Transmission of citrus leprosis virus to mandarins by Brevipalpus phoenicis (Acari:Tenuipalpidae). Proc. Conf. Int. Org. Citrus Virol. 14:174–178.Google Scholar
  34. Rodrigues J. C. V., Kitajima E. W., Childers C. C. and Chagas C. M. 2003. Citrus leprosis virus vectored by Brevipalpus phoenicis (Acari:Tenuipalpidae) in citrus in Brazil. Exp. Appl. Acarol. 30:161–179.PubMedCrossRefGoogle Scholar
  35. Rodrigues J. C. V. and Machado M. A. 2003. Virus-Brevipalpus-plant relationships on citrus leprosis pathosystems. Proc. Intl. Soc. Citriculture Congr. 2000,Orlando,FL,Dec. 3–7. Vol. II, pp. 768–770.Google Scholar
  36. Sneath P. H. A. and Sokal R. R. 1973. Numerical Taxonomy. San Francisco, Freeman.Google Scholar
  37. Stevens J. and Wall R. 1995. The use of random amplified polymorphic DNA (RAPD)analysis for studies of genetic variation in populations of the blowfly Lucilia sericata (Diptera:Calliphoridae) in southern England. Bull. Entomol. Res. 85:549–555.CrossRefGoogle Scholar
  38. Strimmer K. and von Haeseler A. 1996. Quartet puzzling:a quartet maximum likelihood method for reconstructing tree topologies. Mol. Biol. Evol. 13:964–969.Google Scholar
  39. Swofford D. L. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sinauer Associates, Sunderland, MA.Google Scholar
  40. Tamura K. and Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10:512–526.PubMedGoogle Scholar
  41. Thompson J. D., Higgins D. G. and Gibson T. J. 1994. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignments through sequence weighting, positions specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680.PubMedGoogle Scholar
  42. Trindade M. L. B. and Chiavegato L. G. 1990. Colonização por Brevipalpus obovatus Donnadieu, 1875 Brevipalpus californicus (Banks,1904)e Brevipalpus phoenicis (Geijskes,1935) (Acari: Tenuipaipidae)em variedades citricas. Laranja 11:227–240.Google Scholar
  43. Weeks A. R., Van Opijnen T. and Breeuwer J. A. J. 2000. AFLP ngerprinting for assessing intraspeci c variation and genome mapping in mites. Exp. Appl. Acarol. 24:775–793.PubMedCrossRefGoogle Scholar
  44. Weeks A. R., Marec F. and Breeuwer J. A. J. 2001. A mite species that consists entirely of haploid females. Science 292:2479–2482.PubMedCrossRefGoogle Scholar
  45. Welbourn C. W., Ochoa R., Kane E. C. and Erbe E. F. 2003. Morphological observations on Brevipalpus phoenicis (Geijkes)including comparisons with B. californicus (Banks) and B. obovatus (Acari:Tenuipalpidae). Exp. Appl. Acarol. 30:107–133.PubMedCrossRefGoogle Scholar
  46. Wheeler Q. D. and Platnick N. I. 2000. The phylogenetic species concept (sensu Wheeler and Platnick). In: Wheeler Q. D. and Meier R. (eds), Species Concepts and Phylogenetic Theory:A Debate. Columbia Univ. Press, NY, pp. 55–69.Google Scholar
  47. Wiley E. O. and Mayden R. L. 2000. The evolutionary species concept. In: Wheeler Q. D. and Meier R. (eds), Species Concepts and Phylogenetic Theory: A debate. Columbia University Press, New York, pp. 70–224.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • J.C.V. Rodrigues
    • 1
  • M. Gallo-meagher
    • 2
  • R. Ochoa
    • 3
  • C.C. Childers
    • 1
  • B.J. Adams
    • 4
  1. 1.University of Florida, IFASEntomology and Nematology Department, Citrus Research and Education CenterLake AlfredFL
  2. 2.University of FloridaIFAS, Agronomy Department and Plant Molecular and Cellular Biology ProgramGainesville
  3. 3.SEL, ARS, PSI, USDA, BARC-WestBeltsville
  4. 4.Brigham Young UniversityMicrobiology and Molecular Biology DepartmentUT

Personalised recommendations