Advertisement

Applied Categorical Structures

, Volume 12, Issue 5–6, pp 461–477 | Cite as

Facets of Descent III: Monadic Descent for Rings and Algebras

  • G. Janelidze
  • W. Tholen
Article

Abstract

We develop an elementary approach to the classical descent problems for modules and algebras, and their generalizations, based on the theory of monads.

monadic functor action of a monoidal category pure monomorphism effective descent morphism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bénabou, J. and Roubaud, J.: Monades et descente, C. R. Acad. Sci. 270 (1970), 96–98.Google Scholar
  2. 2.
    Borceux, F.: Handbook of Categorical Algebra 2, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1994.Google Scholar
  3. 3.
    Borceux, F.: Handbook of Categorical Algebra 3, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1994.Google Scholar
  4. 4.
    Borceux, F., Janelidze, G. and Kelly, G. M.: Internal object actions, in preparation.Google Scholar
  5. 5.
    Caenepeel, S.: Galois corings from the descent theory point of view, in Galois Theory, Hopf Algebras and Semiabelian Categories, Fields Institute Communications 43, Amer. Math. Soc., Providence, RI, 2004, pp. 163–186.Google Scholar
  6. 6.
    Eilenberg, S. and Kelly, G. M.: Closed categories, in Proc. Conf. Categorical Algebra (La Jolla 1965), Springer-Verlag, Berlin, 1966.Google Scholar
  7. 7.
    Grothendieck, A.: Technique de descente et théorems d'existence en géometrie algebrique, I. Géneralités. Descente par morphismes fidélement plats, Séminaire Bourbaki 190 (1959).Google Scholar
  8. 8.
    Janelidze, G. and Tholen, W.: Facets of descent I, Appl. Categ. Structures 2 (1994), 245–281.Google Scholar
  9. 9.
    Janelidze, G. and Tholen, W.: Facets of descent II, Appl. Categ. Structures 5 (1997), 229–248.Google Scholar
  10. 10.
    Joyal, A. and Street, R.: Braided tensor categories, Adv. Math. 102 (1993), 20–78.Google Scholar
  11. 11.
    Joyal, A. and Tierney, M.: An Extension of the Galois Theory of Grothendieck,Mem.Amer. Math. Soc. 309, Providence, RI, 1984.Google Scholar
  12. 12.
    Knus, M. A. and Ojanguren, M.: Théorie de la descente et algébres d'Azumaya, Lecture Notes in Math. 389, Springer-Verlag, Berlin, 1974.Google Scholar
  13. 13.
    Laan, V.: On descent theory for monoid actions, Appl. Categ. Structures 12(5–6) (2004), 479–483 (this volume).Google Scholar
  14. 14.
    Mac Lane, S.: Categories for the Working Mathematician, 2nd edn, Springer-Verlag, New York, 1998.Google Scholar
  15. 15.
    Makkai, M.: Duality and Definability in First Order Logic, Mem. Amer. Math. Soc. 503, Providence, RI, 1993.Google Scholar
  16. 16.
    Mesablishvili, B.: Pure morphisms of commutative rings are effective descent morphisms for modules – a new proof, Theory Appl. Categ. 7 (2000), 38–42.Google Scholar
  17. 17.
    Moerdijk, I.: Descent theory for toposes, Bull. Soc. Math. Belgique 41 (1989), 373–391.Google Scholar
  18. 18.
    Nuss, P.: Noncommutative descent and nonabelian cohomology, K-Theory 12 (1997), 23–74.Google Scholar
  19. 19.
    Olivier, J.-P.: Descente par morphismes purs, C. R. Acad. Sci. Paris Ser. A-B 271 (1970), A821–A823.Google Scholar
  20. 20.
    Pare, R.: On absolute colimits, J. Algebra 19 (1971), 80–97.Google Scholar
  21. 21.
    Pareigis, B.: Non-additive ring-and module theory II: C-categories, C-functors and C-morphisms, Publ. Math. Debrecen 24 (1977), 351–361.Google Scholar
  22. 22.
    Plewe, T.: Localic triquotient maps are effective descent maps, Math. Proc. Cambridge Philos. Soc. 122 (1997), 17–43.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • G. Janelidze
    • 1
    • 2
  • W. Tholen
    • 3
  1. 1.Mathematical Institute of the Georgian Academy of SciencesTbilisiGeorgia
  2. 2.Department of Mathematics and Applied MathematicsUniversity of Cape TownRondeboschSouth Africa
  3. 3.Department of Mathematics and StatisticsYork UniversityTorontoCanada

Personalised recommendations