Facets of Descent III: Monadic Descent for Rings and Algebras
Article
- 215 Downloads
- 11 Citations
Abstract
We develop an elementary approach to the classical descent problems for modules and algebras, and their generalizations, based on the theory of monads.
monadic functor action of a monoidal category pure monomorphism effective descent morphism
Preview
Unable to display preview. Download preview PDF.
References
- 1.Bénabou, J. and Roubaud, J.: Monades et descente, C. R. Acad. Sci. 270 (1970), 96–98.Google Scholar
- 2.Borceux, F.: Handbook of Categorical Algebra 2, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1994.Google Scholar
- 3.Borceux, F.: Handbook of Categorical Algebra 3, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1994.Google Scholar
- 4.Borceux, F., Janelidze, G. and Kelly, G. M.: Internal object actions, in preparation.Google Scholar
- 5.Caenepeel, S.: Galois corings from the descent theory point of view, in Galois Theory, Hopf Algebras and Semiabelian Categories, Fields Institute Communications 43, Amer. Math. Soc., Providence, RI, 2004, pp. 163–186.Google Scholar
- 6.Eilenberg, S. and Kelly, G. M.: Closed categories, in Proc. Conf. Categorical Algebra (La Jolla 1965), Springer-Verlag, Berlin, 1966.Google Scholar
- 7.Grothendieck, A.: Technique de descente et théorems d'existence en géometrie algebrique, I. Géneralités. Descente par morphismes fidélement plats, Séminaire Bourbaki 190 (1959).Google Scholar
- 8.Janelidze, G. and Tholen, W.: Facets of descent I, Appl. Categ. Structures 2 (1994), 245–281.Google Scholar
- 9.Janelidze, G. and Tholen, W.: Facets of descent II, Appl. Categ. Structures 5 (1997), 229–248.Google Scholar
- 10.Joyal, A. and Street, R.: Braided tensor categories, Adv. Math. 102 (1993), 20–78.Google Scholar
- 11.Joyal, A. and Tierney, M.: An Extension of the Galois Theory of Grothendieck,Mem.Amer. Math. Soc. 309, Providence, RI, 1984.Google Scholar
- 12.Knus, M. A. and Ojanguren, M.: Théorie de la descente et algébres d'Azumaya, Lecture Notes in Math. 389, Springer-Verlag, Berlin, 1974.Google Scholar
- 13.Laan, V.: On descent theory for monoid actions, Appl. Categ. Structures 12(5–6) (2004), 479–483 (this volume).Google Scholar
- 14.Mac Lane, S.: Categories for the Working Mathematician, 2nd edn, Springer-Verlag, New York, 1998.Google Scholar
- 15.Makkai, M.: Duality and Definability in First Order Logic, Mem. Amer. Math. Soc. 503, Providence, RI, 1993.Google Scholar
- 16.Mesablishvili, B.: Pure morphisms of commutative rings are effective descent morphisms for modules – a new proof, Theory Appl. Categ. 7 (2000), 38–42.Google Scholar
- 17.Moerdijk, I.: Descent theory for toposes, Bull. Soc. Math. Belgique 41 (1989), 373–391.Google Scholar
- 18.Nuss, P.: Noncommutative descent and nonabelian cohomology, K-Theory 12 (1997), 23–74.Google Scholar
- 19.Olivier, J.-P.: Descente par morphismes purs, C. R. Acad. Sci. Paris Ser. A-B 271 (1970), A821–A823.Google Scholar
- 20.Pare, R.: On absolute colimits, J. Algebra 19 (1971), 80–97.Google Scholar
- 21.Pareigis, B.: Non-additive ring-and module theory II: C-categories, C-functors and C-morphisms, Publ. Math. Debrecen 24 (1977), 351–361.Google Scholar
- 22.Plewe, T.: Localic triquotient maps are effective descent maps, Math. Proc. Cambridge Philos. Soc. 122 (1997), 17–43.Google Scholar
Copyright information
© Kluwer Academic Publishers 2004