Advertisement

Applied Categorical Structures

, Volume 12, Issue 4, pp 369–377 | Cite as

A Convenient Subcategory of Tych

  • Gábor Lukács
Article

Abstract

A map f:XY between Hausdorff topological spaces is k-continuous if its restriction f| K to every compact subspace K of X is continuous. X is called a k R -space if every k-continuous function from X to a Tychonoff space is continuous. In this paper we investigate the category of Tychonoff k R -spaces, and show that it is Cartesian closed (thus convenient in the sense of Wyler).

kR-space Cartesian closed Tychonoff functor convenient category k-space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blasco, J. L.: On µ-spaces and k R-spaces, Proc. Amer. Math. Soc. 67(1) (1977), 179–186.Google Scholar
  2. 2.
    Booth, P. and Tillotson, J.: Monoidal closed, Cartesian closed and convenient categories of topological spaces, Pacific J. Math. 88(1) (1980), 35–53.Google Scholar
  3. 3.
    Borceux, F.: Handbook of Categorical Algebra, Vol. 2, Categories and Structures, Cambridge University Press, Cambridge, 1994.Google Scholar
  4. 4.
    Borges, C. R.: A stratifiable k R-space which is not a k-space, Proc. Amer. Math. Soc. 81(2) (1981), 308–310.Google Scholar
  5. 5.
    Dubuc, E. J. and Porta, H.: Convenient categories of topological algebras, and their duality theory, J. Pure Appl. Algebra 1(3) (1971), 281–316.Google Scholar
  6. 6.
    Engelking, R.: General Topology, PWN - Polish Scientific Publishers, Warsaw, 1977. Translated from the Polish by the author, Monografie Matematyczne, Tom 60. [Mathematical Monographs, Vol. 60].Google Scholar
  7. 7.
    Henriksen, M. and Woods, R. G.: Separate versus joint continuity: A tale of four topologies, Topology Appl. 97(1- 2) (1999), 175–205. Special issue in honor of W. W. Comfort (Curacao, 1996).Google Scholar
  8. 8.
    Hušek, M.: Products of quotients and of k′-spaces, Comment. Math. Univ. Carolin. 12 (1971), 61–68.Google Scholar
  9. 9.
    Ishii, T.: On the Tychonoff functor and w-compactness, Topology Appl. 11(2) (1980), 173–187.Google Scholar
  10. 10.
    Ishii, T.: On the Tychonoff functor and k-spaces, Questions Answers Gen. Topology 7(2) (1989), 129–133.Google Scholar
  11. 11.
    Ishii, T.: The Tychonoff functor and related topics, in Topics in General Topology, North-Holland, Amsterdam, 1989, pp. 203–243.Google Scholar
  12. 12.
    Kato, A.: A note on pseudocompact spaces and k R-spaces, Proc. Amer. Math. Soc. 63(1) (1977), 175–176.Google Scholar
  13. 13.
    Lin, S.: Note on k R-spaces, Questions Answers Gen. Topology 9(2) (1991), 227–236.Google Scholar
  14. 14.
    McCoy, R. A. and Ntantu, I.: Topological Properties of Spaces of Continuous Functions, Lecture Notes in Mathematics 1315, Springer-Verlag, Berlin, 1988.Google Scholar
  15. 15.
    Michael, E.: A note on k-spaces and k R-spaces, in Topology Conference (Arizona State Univ., Tempe, Ariz., 1967), Arizona State Univ., Tempe, Ariz., 1968, pp. 247–249.Google Scholar
  16. 16.
    Michael, E.: On k-spaces, k R-spaces and k(X), Pacific J. Math. 47 (1973), 487–498.Google Scholar
  17. 17.
    Noble, N.: Countably compact and pseudo-compact products, Czechoslovak Math. J. 19(94) (1969), 390–397.Google Scholar
  18. 18.
    Somasundaram, D. and Ramaswamy, K. M.: On a generalisation of k Rspaces, Indian J. Pure Appl. Math. 24(10) (1993), 581–586.Google Scholar
  19. 19.
    Steenrod, N. E.: A convenient category of topological spaces, Michigan Math. J. 14 (1967), 133–152.Google Scholar
  20. 20.
    Vogt, R. M.: Convenient categories of topological spaces for homotopy theory, Arch. Math. (Basel) 22 (1971), 545–555.Google Scholar
  21. 21.
    Wyler, O.: Convenient categories for topology, Gen. Topology Appl. 3 (1973), 225–242.Google Scholar
  22. 22.
    Yun, Z.: On k R-spaces and k-spaces, Adv. Math. (China) 29(3) (2000), 223–226.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Gábor Lukács
    • 1
  1. 1.Department of Mathematics & StatisticsYork UniversityToronto,Ontario, M3J 1P3Canada. e-mail

Personalised recommendations