Applied Categorical Structures

, Volume 12, Issue 1, pp 81–108 | Cite as

Components of the Fundamental Category

  • L. Fajstrup
  • M. Raussen
  • E. Goubault
  • E. Haucourt

Abstract

In this article we study the fundamental category (Goubault and Raussen, 2002; Goubault, 2000) of a partially ordered topological space (Nachbin, 1965; Johnstone, 1982), as arising in, e.g., concurrency theory (Fajstrup et al., 1999). The “algebra” of dipaths modulo dihomotopy (the fundamental category) of such a po-space is essentially finite in a number of situations: We define a component category of a category of fractions with respect to a suitable system, which contains all relevant information. Furthermore, some of these simpler invariants are conjectured to also satisfy some form of a van Kampen theorem, as the fundamental category does (Goubault, 2002; Grandis, 2001). We end up by giving some hints about how to carry out some computations in simple cases.

po-space dihomotopy fundamental category category of fractions component invertible morphism lr-system pure system weakly invertible morphism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borceux, F.: Handbook of Categorical Algebra 1: Basic Category Theory, Cambridge University Press, 1994.Google Scholar
  2. 2.
    Brown, R.: Elements of Modern Topology, McGraw-Hill, Maidenhead, 1968.Google Scholar
  3. 3.
    Dijkstra, E.: Cooperating Sequential Processes, Academic Press, New York, 1968.Google Scholar
  4. 4.
    Fajstrup, L., Goubault, E. and Raussen, M.: Detecting deadlocks in concurrent systems, in Proceedings of the 9th International Conference on Concurrency Theory, Springer-Verlag, 1998, pp. 332-447, also available at http://www.dmi.ens.fr/goubault.Google Scholar
  5. 5.
    Fajstrup, L., Goubault, E. and Raussen, M.: Algebraic topology and concurrency, Submitted to Theoretical Computer Science, also Technical Report, Aalborg University, 1999.Google Scholar
  6. 6.
    Gabriel, P. and Zisman, M.: Calculus of Fractions and Homotopy Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 35, Springer-Verlag, 1967.Google Scholar
  7. 7.
    Gaucher, P.: A convenient category for the homotopy theory of concurrency, Preprint, 2002, available at math.AT/0201252.Google Scholar
  8. 8.
    Gaucher, P. and Goubault, E.: Topological deformation of higher dimensional automata, Homotopy Homology Appl. 5(2) (2003), 39-82.Google Scholar
  9. 9.
    Goubault, E.: Some geometric perspectives in concurrency theory, Homology Homotopy Appl. 5(2) (2003), 95-136.Google Scholar
  10. 10.
    Goubault, E. and Raussen, M.: Dihomotopy as a tool in state space analysis, in S. Rajsbaum (ed.), LATIN 2002: Theoretical Informatics (Cancun, Mexico), Lecture Notes in Computer Science 2286, Springer-Verlag, 2002, pp. 16-37.Google Scholar
  11. 11.
    Grandis, M.: Directed homotopy theory, I. The fundamental category, Cahiers Topologie Géom. Différentielle Catég. 44, Preliminary version: Dip. Mat. Univ. Genova, Preprint 443, 2003.Google Scholar
  12. 12.
    Higgins, P. J.: Categories and Groupoids, Van Nostrand Reinhold Mathematical Series 32, 1971.Google Scholar
  13. 13.
    Johnstone, P. T.: Stone Spaces, Cambridge University Press, 1982.Google Scholar
  14. 14.
    Kelly, G. M., Lack, S. and Walters, R. F. C.: Coinverters and categories of fractions for categories with structure, Appl. Categ. Structures (1993).Google Scholar
  15. 15.
    Mac Lane, S.: Categories for the Working Mathematician, Springer-Verlag, 1971.Google Scholar
  16. 16.
    Nachbin, L.: Topology and Order, Van Nostrand, Princeton, 1965.Google Scholar
  17. 17.
    Raussen, M.: On the classification of dipaths in geometric models for concurrency, Math. Structures Comput. Sci. 10(4) (2000), 427-457.Google Scholar
  18. 18.
    Raussen, M.: State spaces and dipaths up to dihomotopy, Homology Homotopy Appl. 5(2) (2003), 257-280.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • L. Fajstrup
    • 1
  • M. Raussen
    • 1
  • E. Goubault
    • 2
  • E. Haucourt
    • 2
  1. 1.Department of Mathematical SciencesAalborg UniversityDenmark
  2. 2.CEA/SaclayFrance

Personalised recommendations