Antonie van Leeuwenhoek

, Volume 86, Issue 1, pp 1–25 | Cite as

Applications of free living plant growth-promoting rhizobacteria

  • M. Lucy
  • E. Reed
  • Bernard R. Glick
Article

Abstract

Free-living plant growth-promoting rhizobacteria (PGPR) can be used in a variety of ways when plant growth enhancements are required. The most intensively researched use of PGPR has been in agriculture and horticulture. Several PGPR formulations are currently available as commercial products for agricultural production. Recently developing areas of PGPR usage include forest regeneration and phytoremediation of contaminated soils. As the mechanisms of plant growth promotion by these bacteria are unravelled, the possibility of more efficient plant-bacteria pairings for novel and practical uses will follow. The progress to date in using PGPR in a variety of applications with different plants is summarized and discussed here.

Agriculture Forestry Horticulture Inoculants Phytoremediation Plant growth promoting rhizobacteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhromeiko A.I. and Shestakova V.A. 1958. The influence of rhizosphere microorganisms on the uptake and secretion of phosphorus and sulphur by the roots of arboreal. Proc. of 2nd U.N. Internat. Conf. Peace. Uses Atomic Energy seedlings, pp. 193-199.Google Scholar
  2. Alam M.S., Cui Z.J., Yamagishi T. and Ishii R. 2001. Grain yield and related physiological characteristics of rice plants (Oryza sativa L.) inoculated with free-living rhizobacteria. Plant Prod. Sci. 4: 125-130.Google Scholar
  3. Alstrom S. 1995. Evidence of disease resistance induced by rhizo-sphere pseudomonad against Pseudomonas syringae pv. phaseolicola. J. Gen. Appl. Microbiol. 41: 315-325.Google Scholar
  4. Anderson T.A., Guthrie E.A. and Walton B.T. 1993. Bioremediation in the rhizosphere: plant roots and associated microbes clean contaminated soil. Environ. Sci. Technol. 27: 2630-2636.Google Scholar
  5. Andrade G., De Leij F.A.A.M. and Lynch J.M. 1998. Plant mediated interactions between Pseudomonas fluorescens, Rhizobium leguminosarum and arbuscular mycorrhizae on pea. Lett. Appl. Microbiol. 26: 311-316.Google Scholar
  6. Baldani V.L.D., Baldani J.I. and Döbereiner J. 1987. Inoculation on field grown wheat(Triticum aestivum) with Azospirillum spp. in Brazil. Biol. Fert. Soils 4: 37-40.Google Scholar
  7. Bashan Y. 1998. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol. Adv. 16: 729-770.Google Scholar
  8. Bashan Y. and Holguin G. 2002. Plant growth-promoting bacteria: A potential tool for arid mangrove reforestation. Trees 16: 159-166.Google Scholar
  9. Bashan Y., Rojas A. and Puente M.E. 1999. Improved establishment and development of three cactus species inoculated with Azospirillum brasilense transplanted into disturbed urban desert soil. Can. J. Microbiol. 45: 441-451.Google Scholar
  10. Beall F. and Tipping B. 1989. Plant growth-promoting rhizobacte-ria in forestry. Abstr. 177. For. Res. Market. Proc., Ont. For. Res. Com., Toronto, USA.Google Scholar
  11. Belimov A.A. and Dietz K. 2000. Effect of associative bacteria on element composition of barley seedlings grown in solution cul-ture at toxic cadmium concentrations. Microbiol. Res. 155: 113-121.Google Scholar
  12. Belimov A.A., Kunakova A.M. and Gruzdeva E.V. 1998a. Influence of soil pH on the interaction of associative bacteria with barley. Microbiology 67: 463-469.Google Scholar
  13. Belimov A.A., Kunakova A.M., Kozhemiakov A.P., Stepanok V.V. and Yudkin L.Y. 1998b. Effect of associative bacteria on barley grown in heavy metal contaminated soil. In: Proceedings of the International Symposium on Agro-environmental issues and future strategies: Towards the 21st Century. Faisalakad, Pakistan, May 25-30.Google Scholar
  14. Belimov A.A., Kunakova A.M., Vasilyeva N.D., Kovatcheva T.S., Dritchko V.F., Kuzovatov S.N., Trushkina I.R. and Alekseyev Y.V. 1998. Accumulation of radionuclides by associative bacteria and the uptake of 134 Cs by the inoculated barley plants. In: Malik et al.(ed.), Nitrogen Fixation with Non-Legumes. Kluwer Academic Publishers, Great Britain, pp. 275-280.Google Scholar
  15. Bensalim S., Nowak J. and Asiedu S.K. 1998. A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am. J. Potato Res. 75: 145-152.Google Scholar
  16. Bertrand H., Nalin R., Bally R. and Cleyet-Marel J.C. 2001. Isolation and identification of the most efficient plant growth-promoting bacteria associated with canola(Brassica napus). Biol. Fert. Soils 33: 152-156.Google Scholar
  17. Boddey R.M. and Dobereiner J. 1988. Nitrogen fixation associated with grasses and cereals: recent results and perspectives for future research. Plant. Soil. 108: 53-65.Google Scholar
  18. Broadbent P., Baker K.F., Franks N. and Holland J. 1977. Effect of Bacillus spp. on increased growth of seedlings in steamed and in non-treated soil. Phytopathol. 67: 1027-1034.Google Scholar
  19. Brown M.E. 1974. Seed and root bacterization. Ann. Rev. Phytopathol. 12: 181-197.Google Scholar
  20. Burd G.I., Dixon D.G. and Glick B.R. 2000. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol. 46: 237-245.Google Scholar
  21. Burd G.I., Dixon D.G. and Glick B.R. 1998. A plant-growth promoting bacterium that decreases nickel toxicity in seedlings. Appl. Environ. Microbiol. 64: 3663-3668.Google Scholar
  22. Burr T.J., Schroth M.N. and Suslow T. 1978. Increased potato yields by treatment of seedpieces with specific strains of Pseudomonas fluorescens and P. putida. Phytopathol. 68: 1377-1383.Google Scholar
  23. Caesar A.J. and Burr T.J. 1987. Growth promotion of apple seedlings and rootstocks by specific strains of bacteria. Phytopathol. 77: 1583-1588.Google Scholar
  24. Caceres E.A.R., Anta G.G., Lopex J.R., Di Ciocco C.A., Basurco J.C.P. and Parada J.L. 1996. Response of field-grown wheat to inoculation with Azospirillum brasilense and Bacillus polymyxa in the semiarid region of Argentina. Arid. Soil. Res. Rehab. 10: 13-20.Google Scholar
  25. Cakmakci R., Kantar F. and Sahin F. 2001. Effect of N2-fixing bacterial inoculations on yield of sugar beet and barley. J. Plant. Nutr. Soil. Sci. 164: 527-531.Google Scholar
  26. Chanway C.P. 1995. Differential response of western hemlock from low and high elevations to inoculation with plant growth-promoting Bacillus polymyxa. Soil. Biol. Biochem. 27: 767-775.Google Scholar
  27. Chanway C.P. 1997. Inoculation of tree roots with plant growth promoting rhizobacteria: An emerging technology for reforestation. For. Sci. 43: 99-112.Google Scholar
  28. Chanway C.P. and Holl F.B. 1991. Biomass increase and associative nitrogen fixation of mycorrhizal Pinus contorta Dougl. Seedlings inoculated with a plant growth promoting Bacillus strain. Can. J. Microbiol. 69: 507-511.Google Scholar
  29. Chanway C.P. and Holl F.B 1993. First year performance of spruce seedlings after inoculation with plant growth promoting rhizobacteria. Can. J. Microbiol. 39: 520-527.Google Scholar
  30. Chanway C.P. and Holl F.B. 1994. Ecological growth response specificity of two Douglas-fir ecotypes inoculated with coexistent beneficial rhizosphere bacteria. Can. J. Bot. 72: 582-586.Google Scholar
  31. Chanway C.P., Radley R.A. and Holl F.B. 1991. Inoculation of conifer seed with plant growth promoting Bacillus strains causes increased seedling emergence and biomass. Soil Biol. Biochem. 23: 575-580.Google Scholar
  32. Chanway C.P., Shishido M., Nairn J., Jungwirth S., Markham J., Xiao G. and Holl F.B. 2000. Endophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria. For. Ecol. Manage. 133: 81-88.Google Scholar
  33. Chet I. and Chernin L. 2002. Biocontrol, microbial agents in soil.. In: Bitton G (ed.), Encyclopedia of Environmental Microbiology. John Willey and Sons Inc., New York, USA,. pp 45-465.Google Scholar
  34. Cooper R. 1959. Bacterial fertilizers in the Soviet Union. Soils Fertil. 22: 327-333.Google Scholar
  35. Cunningham S.D. and Berti W.R. 1993. Remediation of contaminated soils with green plants: an overview. In vitro Cell. Dev. Biol. 29P: 207-212.Google Scholar
  36. Cunningham S.D. and Ow D.W. 1996. Promises and Prospects of phytoremediation. Plant Physiol. 110: 715-719.Google Scholar
  37. Cunningham S.D., Berti W.R. and Huang J.W. 1995. Phytoremediation of contaminated soils. Trends Biotechnol. 13: 393-397.Google Scholar
  38. De Freitas J.R. and Germida J.J. 1990. Plant growth promoting rhizobacteria for winter wheat. Can. J. Microbiol. 36: 265-272.Google Scholar
  39. De Freitas J.R. and Germida J.J. 1991. Pseudomonas cepacia and Pseudomonas putida as winter wheat inoculants for biocontrol of Rhizoctonia solani. Can. J. Microbiol. 37: 780-784.Google Scholar
  40. De Freitas J.R. and Germida J.J. 1992a. Growth promotion of winter wheat by fluorescent pseudomonads under growth chamber conditions. Soil. Biol. Biochem. 24: 1127-1135.Google Scholar
  41. De Freitas J.R. and Germida J.J. 1992b. Growth promotion of winter wheat by fluorescent pseudomonads under field conditions. Soil. Biol. Biochem. 24: 1137-1146.Google Scholar
  42. de Silva A., Patterson K., Rothrock C. and Moore J. 2000. Growth promotion of highbush blueberry by fungal and bacterial inoculants. Hort. Sci. 35: 1228-1230.Google Scholar
  43. de Souza M.P., Chu D., Zhao M., Zayed A.M., Ruzin S.E., Schich-nes D. and Terry N. 1999. Rhizosphere bacteria enhance sele-nium accumulation and volatiliation by Indian mustard. Plant. Physiol. 119: 565-573.Google Scholar
  44. Di Ciocco C.A. and Rodriguez-Caceres E. 1994. Field inoculation of Setaria italica with Azospirillum spp. in Argentine humid pampas. Field Crop Res. 37: 253-257.Google Scholar
  45. Dobbelaere S., Croonenborghs A., Thys A., Ptacek D., Vanderley-den J., Dutto P., Labandera-Gonzalez C., Caballero-Mellado, Aguirre J.F., Kapulnik Y., Brener S., Burdman S., Kadouri D., Sarig S. and Okon Y. 2001. Responses of agronomically important crops to inoculation with Azospirillum. Aust J. Plant Physiol. 28: 871-879.Google Scholar
  46. Dobbelaere S., Croonenborghs A., Thys A., Vande Broek A. and Vanderleyden J. 1999. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA produc-tion on wheat. Plant Soil. 212: 155-164.Google Scholar
  47. Dong Z. and Layzell D.B. 2001. H2 oxidation, O2 uptake and CO2 fixation in hydrogen treated soils. Plant. Soil. 229: 1-12.Google Scholar
  48. Enebak S.A., Wei G. and Kloepper J.W. 1998. Effects of plant growth-promoting rhizobacteria on loblolly and slash pine seed-lings. For. Sci. 44: 139-144.Google Scholar
  49. Evans H.J., Harker A.R., Papen H., Russell S.A., Hanus F.J. and Zuber M. 1987. Physiology, biochemistry and genetics of the uptake hydrogenase in rhizobacteria. Ann. Rev. Microbiol. 41: 335-361.Google Scholar
  50. Fages J. 1994. Azospirillum inoculants and field experiments. In: Okon Y.(ed.), Azospirillum-Plant associations. CRC Press, Boca Raton, Florida, pp 87-110.Google Scholar
  51. Fages J. and Arsac J.F. 1991. Sunflower inoculation with Azospirillum and other plant growth promoting rhizobacteria. Plant. Soil. 137: 87-90.Google Scholar
  52. Fallik E. and Okon Y. 1996. The response of maize(Zea mays) to Azospirillum inoculation in various types of soils in the field. World J. Microbiol. Biotechnol. 12: 511-515.Google Scholar
  53. Frommel. M. I., Nowak J. and Lazarovitis G. 1991. Growth en-hancement and developmental modifications of in vitro grown potato(Solanum tuberosum ssp. tuberosum). Plant Physiol. 96: 928-936.Google Scholar
  54. Frommel M.I., Nowak J. and Lazarovitis G. 1993. Treatment of potato tubers with a growth promoting Pseudomonas sp.: Plant growth responses and bacterium distribution in the rhizosphere. Plant Soil. 150: 51-60.Google Scholar
  55. Gagné S., Dehbi L., Le Quéré D., Cayer F., Morin J., Lemay R. and Fournier N. 1993. Increase of greenhouse tomato fruit yields by plant growth-promoting rhizobacteria(PGPR) inoculated into the peat-based growing media. Soil Biol. Biochem. 25: 269-272.Google Scholar
  56. Gardner J.M., Chandler J.L. and Feldman A.W. 1984. Growth pro-motion and inhibition by antibiotic-producing fluorescent pseudomonads on citrus roots. Plant Soil. 77: 103-113.Google Scholar
  57. Geels F.P., Lamers J.G., Hoekstra O. and Schippers B. 1986. Po-tato plant response to seed tuber bacterization in the field in various rotations. Neth. J. Plant Pathol. 92: 257-272.Google Scholar
  58. Glick B.R., Patten C.L., Holguin G. and Penrose D.M. 1999. Bio-chemical and genetic mechanisms used by plant growth-promot-ing bacteria. Imperial College Press, London, UK.Google Scholar
  59. Glick B.R., Liu C., Ghosh S. and Dumbroff E.B. 1997. Early de-velopment of canola seedling in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biol. Biochem. 29: 1233-1239.Google Scholar
  60. Glick B.R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41: 109-117.Google Scholar
  61. Grichko V.P. and Glick B.R. 2001. Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol. Biochem. 39: 11-17.Google Scholar
  62. Hall J.A., Peirson D., Ghosh S. and Glick B.R. 1996. Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Isr. J. Plant Sci. 44: 37-42.Google Scholar
  63. Hamaoui B., Abbadi J.M., Burdman S., Rashid A., Sarig S. and Okon Y. 2001. Effects of inoculation with Azospirillum brasilense on chickpeas(Cicer arietinum) and faba beans(Vicia faba) under different growth conditions. Agronomie 21: 553-560.Google Scholar
  64. Harper S.H.T. and Lynch J.M. 1979. Effects of Azotobacter chroo-coccum on barley seed germination and seedling development. J. Gen. Microbiol. 112: 45-51.Google Scholar
  65. Hernandez Y., Sogo J. and Sarmiento M. 1997. Azospirillum inoculation on Zea mays. Cuban J. Agr. Sci. 31: 203-209.Google Scholar
  66. Hoffmann-Hergarten S., Gulati M.K. and Sikora R.A. 1998. Yield response and biological control of Meloidogyne incognita on lettuce and tomato with rhizobacteria. J. Plant Dis. Protect. 105: 349-358.Google Scholar
  67. Hoflich G and Metz R. 1997. Interactions of plant-microorganism-associations in heavy metal containing soils from sewage farms. Bodenkultur 48: 239-247.Google Scholar
  68. Holl F.B. and Chanway C.P. 1992. Rhizosphere colonization and seedling growth promotion of lodgepole pine by Bacillus poly-myxa. Can. J. Microbiol. 38: 303-308.Google Scholar
  69. Hong Y., Glick B.R. and Pasternak J.J. 1991. Plant-microbial interaction under gnotobiotic conditions: a scanning electron microscope study. Curr. Microbiol. 23: 111-114.Google Scholar
  70. Howie W.J. and Echandi E. 1983. Rhizobacteria: Influence of cultivar and soil type on plant growth and yield of potato. Soil Biol. Biochem. 15: 127-132.Google Scholar
  71. Huang X.D., El-Alawi Y., Penrose D.M., Glick B.R. and Greenberg B.M. 2003a. Multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ. Pollut. In press.Google Scholar
  72. Huang X.D., El-Alawi Y., Penrose D.M., Glick B.R. and Greenberg B.M. 2003b. Responses of plants to creosote during phytoremediation and their significance for remediation processes. Environ. Pollut. In press.Google Scholar
  73. Huang X.D., Glick B.R. and Greenberg B.M. 2000. Combining re-mediation technologies for removal of persistent organic contaminants from soil.. In: Greenberg B.M., Hull R.N., Roberts M.H. and Gensomer R.W. (ed.), Environmental Toxicology and Risk Assessment Science, Policy and Standardization-Implications for Environmental Decisions. American Society for Testing Materials, West Conshohochen, Pennsylvania, USA, pp. 271-282.Google Scholar
  74. Iswandi A., Bossier P., Vandenbeele J. and Verstraete W. 1987. Effect of seed inoculation with the rhizopseudomonad strain 7NSK2 on the root microbiota of maize(Zea mays) and barley (Hordeum vulgare). Biol. Fert. Soils 3: 153-158.Google Scholar
  75. Jacoud C., Faure D., Wadoux P. and Bally R. 1998. Development of a strain-specific probe to follow inoculated Azospirillum lipoferum CRT1 maize root development by inoculation. FEMS Microbiol. Ecol. 27: 43-51.Google Scholar
  76. Kapulnik Y., Sarig S., Nur I., Okon J., Kigel J. and Henis V 1981. Yield increases in summer cereal crops of Israel in fields inocu-lated with Azospirillum. Experientia Agricola 17: 179-187.Google Scholar
  77. Klein D.A., Salzwedel J.L. and Dazzo F.B. 1990. Microbial colonization of plant roots.. In: Nakas J.P. and Hagedorn C. (ed.), Biotechnology of Plant-Microbe Interactions. McGraw-Hill, New York, USA, pp. 189-225.Google Scholar
  78. Kloepper J.W., Lifshitz R. and Zablotowicz R.M. 1989. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7: 39-43.Google Scholar
  79. Kloepper J.W., Hume D.J., Scher F.M., Singleton C., Tipping B., Laliberté M., Frauley K., Kutchaw T., Simonson C., Lifshitz R., Zaleska I. and Lee L. 1988. Plant growth-promoting rhizobacte-ria on canola(rapeseed). Plant Dis. 72: 42-46.Google Scholar
  80. Kloepper J.W., Schoth M.N. and Miller T.D. 1980. Effects of rhizosphere colonization by plant growth-promoting rhizobacte-ria on potato plant development and yield. Phytopathol. 70: 1078-1082.Google Scholar
  81. Kokalis-Burelle N., Vavrina E.N., Rosskopf E.N. and Shelby R.A. 2002. Field evaluation of plant growth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238: 257-266.Google Scholar
  82. Kropp B.R., Thomas E., Pounder J.I. and Anderson A.J. 1996. In-creased emergence of spring wheat after inoculation with Pseudomonas chlororaphis isolate 2E3 under field and labora-tory conditions. Biol. Fert. Soil. 23: 200-206.Google Scholar
  83. Lalande R., Bissonette N., Coutlée D. and Antoun H. 1989. Iden-tification of rhizobacteria from maize and determination of the plant-growth promoting potential. Plant Soil 115: 7-11.Google Scholar
  84. Leyval C. and Berthelin J. 1989. Influence of acid-producing Agrobacterium and Laccaria laccata on pine and beech growth, nutrient uptake and exudation. Agr. Ecosyst. Environ. 28: 313-319.Google Scholar
  85. Lifshitz R., Kloepper J.W., Scher F.M., Tipping E.M. and Laliberté M. 1986. Nitrogen-Fixing pseudomonads isolated from roots of plants grown in the Canadian high arctic. Appl. Environ. Micro-biol. 51: 251-255.Google Scholar
  86. Lifshitz R., Kloepper J.W., Kozlowski M., Simonson C., Tipping E.M. and Zaleska I. 1987. Growth promotion of canola(rape-seed) seedlings by a strain of Pseudomonas putida under gnoto-tropic conditions. Can. J. Microbiol. 23: 390-395.Google Scholar
  87. Marek-Kozaczuk M., Kopcinska J., Lotocka B., Golinowski W. and Skorupska A. 2000. Infection of clover by plant growth promot-ing Pseudomonas fluorescens strain 267 and Rhizobium legumi-nosarum bv. trifolii studied by mTn-gusA. Antonie van Leeuwenhoek 78: 1-11.Google Scholar
  88. Mayak S., Tirosh T. and Glick B.R. 2001. Stimulation of the growth of tomato, pepper and mung bean plants by the plant growth-promoting bacterium Enterobacter cloacae CAL3. Biol. Agr. Hort. 19: 261-274.Google Scholar
  89. McCullagh M., Utkhede R., Menzies J.G., Punja Z.K. and Paulits T.C. 1996. Evaluation of plant growth promoting rhizobacteria for biological control of Pythium root rot of cucumbers grown in rockwool and effects on yield. Europ. J. Plant Pathol. 102: 747-755.Google Scholar
  90. McLearn N. and Dong Z. 2002. Microbial nature of the hydrogen-oxidizing agent in hydrogen-treated soil. Biol. Fert. Soils 35: 465-469.Google Scholar
  91. Mei R., Chen B., Lu S. and Chen Y. 1990. Field application of yield increasing bacteria(YIB). Chin. J. Microecol. 2: 45-49.Google Scholar
  92. Mishustin E.N. and Naumova A.N. 1962. Bacterial fertilizers: Their effectiveness and mode of action. Mikrobiologiya 31: 543-555.Google Scholar
  93. Mohammad G. and Prasad R. 1988. Influence of microbial fertilizers on biomass accumulation in polypotted Eucalyptus camaldulensis Dehn. seedlings. J. Trop. For. 4: 47-77.Google Scholar
  94. Nie L., Shah S., Rashid A., Burd G.I., Dixon D.G. and Glick B.R. 2002. Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Entero-bacter cloacae CAL2. Plant Physiol. Biochem. 40: 355-361.Google Scholar
  95. Okon Y. 1985. Azospirillum as a potential inoculant for agriculture. Trends Biotechnol. 3: 223-228.Google Scholar
  96. Okon Y., Kapulnik Y. and Sarig S. 1988. Field inoculation studies with Azospirillium in Israel.. In: Subba Rao N.S. (ed.), Biological Nitrogen Fixation Recent Developments. Oxford and IBH Publishing Co. New Delhi, India, pp. 175-195.Google Scholar
  97. Okon Y. and Labandera-Gonzalez C.A. 1994. Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol. Biochem. 26: 1591-1601.Google Scholar
  98. Omar N., Heulin Th., Weinhard P. and Alaa El-Din M.N. 1989. Field inoculation of rice with in vitro selected plant growth pro-moting-rhizobacteria. Agronomie 9: 803-808.Google Scholar
  99. O'Neill G.A., Chanway C.P., Axelrood P.E., Radley R.A. and Holl F.B. 1992. Growth response specificity of spruce inoculated with coexistent rhizosphere bacteria. Can. J. Bot. 70: 2347-2353.Google Scholar
  100. Pan B., Vessey J.K. and Smith D.L. 2002. Response of field-grown soybean to co-inoculation with the plant growth promoting rhizobacteria Serratia proteamaculans or Serratia liquefaciens and Bradyrhizobium japonicum pre-incubated with genistien. Europ. J. Agronomy 17: 143-153.Google Scholar
  101. Pandey A., Durgapal A., Joshi M. and Palni L.M.S. 1999. Influence of Pseudomonas corrugate inoculation on root colonization and growth promotion of two important hill crops. Microbiol. Res. 154: 259-266.Google Scholar
  102. Pandey R.K., Bahl R.K. and Rao P.R.T. 1986. Growth stimulation effects of nitrogen fixing bacteria(biofertilizer) on oak seedlings. Ind. For. 112: 75-79.Google Scholar
  103. Parke J.L. 1991. Root colonization by indigenous and introduced microorganisms.. In: Keister D.L. and Cregan P.B. (ed.), The Rhizosphere and Plant Growth. Kluwer Academic Publishers, Dordrecht, the Netherlands, pp 33-42.Google Scholar
  104. Pokojska-Burdziej A. 1982. The effect of microorganisms, microbial metabolites and plant growth regulators(IAA and GA3 ) on the growth of pine seedlings(Pinus sylvestris L.). Pol. J. Soil Sci. 15: 137-143.Google Scholar
  105. Polyanskaya L.M., Vedina O.T., Lysak L.V. and Zvyagintev D.G. 2000. The growth-promoting effect of Beijerinckia mobilis and Clostridium sp. cultures on some agricultural crops. Microbiol. 71: 109-115.Google Scholar
  106. Probanza A., Lucas Garcia J.A., Ruiz Palomino M., Ramos B. and Gutiérrez Mañero F.J. 2002. Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilis CECT 5105). Appl. Soil Ecol. 20: 75-84.Google Scholar
  107. Puente M.E. and Bashan Y. 1993. Effect of inoculation with Azospirillum brasilense strains on the germination and seedlings growth of the giant columnar cardon cactus(Pachycereus pringlei). Symbiosis 15: 49-60.Google Scholar
  108. Rao NSS 1986. Cereal nitrogen fixation research under the BNF coordinated project of the ICAR.. In: Wani S.P. (ed.), Proceed-ings of the Working Group Meeting on Cereal Nitrogen Fixation. ICRISA, Patancheru, India, pp 23-35.Google Scholar
  109. Reddy M.S. and Rahe J.E. 1989. Growth effects associated with seed bacterization not correlated with populations of Bacillus subtilis inoculant in onion seedling rhizospheres. Soil Biol. Biochem. 21: 373-378.Google Scholar
  110. Reynders L. and Vlassak K. 1982. Use of Azospirillum brasilense as biofertilizer in intensive wheat cropping. Plant Soil 66: 217-223.Google Scholar
  111. Ribaudo C.M., Rondanini D.P., Cura J.A. and Fraschina A.A. 2001. Response of Zea mays to the inoculation with Azospirillum on nitrogen metabolism under greenhouse conditions. Biol. Plantarum 44: 631-634.Google Scholar
  112. Rodriguez-Barrueco C.E., Cervantes N.S., Subbarao N.S. and Rodriguez-Caceres E. 1991. Growth promoting effect of Azospiril-lum brasilense on Casuarina cunninghamiana Miq. seedlings. Plant Soil. 135: 121-124.Google Scholar
  113. Rojas A., Holguin G., Glick B.R. and Bashan Y. 2001. Synergism between Phyllobacterium sp.(N2-fixer) and Bacillus lichenifor-mis (P-solubilizer), both from a semi-arid mangrove rhizosphere. FEMS Microbiol. Ecol. 35: 181-187.Google Scholar
  114. Sarig S., Blum A. and Okon Y. 1998. Improvement of the water status and yield of field grown grain sorghum(Sorghum bico-lour) by inoculation with Azospirillum brasilense. J. Agr. Sci. 110: 271-277.Google Scholar
  115. Sarig S., Okon Y. and Blum A. 1992. Effect of Azospirillum brasilense inoculation on growth dynamics and hydraulic conductivity of Sorghum bicolor roots. J. Plant Nutr. 15: 805-819.Google Scholar
  116. Sarig S., Okon Y. and Blum A. 1990. Promotion of leaf area development and yield in Sorghum bicolor inoculated with Azospirillum brasilense. Symbiosis 9: 235-245.Google Scholar
  117. Saubidet M.I., Fatta N. and Barneix A.J. 2002. The effect of inoculation with Azospirillum brasilense on growth and nitrogen utilization by wheat plants. Plant Soil. 245: 215-222.Google Scholar
  118. Shishido M. and Chanway C.P. 2000. Colonization and growth of outplanted spruce seedlings pre-inoculated with plant growth-promoting rhizobacteria in the greenhouse. Can. J. For. Res. 30: 848-854.Google Scholar
  119. Smith R.L., Schank S.C., Bouton J.R. and Quesenberry K.H. 1978. Yield increases in tropical grasses after inoculation with Azospirillum lipoferum. Ecological Bulletin(Stockholm) 26: 380-385.Google Scholar
  120. Smith R.L., Schank S.C., Milam J.R. and Baltensperger A. 1984. Responses of sorghum and Pennisetum species to the N2-Fixing bacterium Azospirillum brasilense. Appl. Environ. Microbiol. 47: 1331-1336.Google Scholar
  121. Subba Rao N.S. 1999. Soil Microbiology-Fourth Edition of Soil Microorganisms and Plant Growth. Science Publishers Inc. Enfield, New Hampshire, USA.Google Scholar
  122. Sun X., Griffith M., Pasternak J.J. and Glick B.R. 1995. Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol. 41: 776-784.Google Scholar
  123. Suslow T.V. and Schroth M.N. 1982. Rhizobacteria of sugar beets: Effects of seed application and root colonization on yield. Phytopathol. 72: 199-206.Google Scholar
  124. Tang W., Pasternak J.J. and Glick B.R. 1995. Persistence in soil of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 and genetically manipulated derived strains. Can. J. Microbiol. 41: 445-451.Google Scholar
  125. Tran Van V., Berge O., Ngo Ke S., Balandreau J. and Heulin T. 2000. Repeated beneficial effects of rice inoculation with a strain with a strain of Burkholeria vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant Soil 281: 273-284.Google Scholar
  126. Turner J.T. and Backman P.A. 1991. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Disease 75: 347-353.Google Scholar
  127. Uthede R.S., Koch C.A. and Menzies J.G. 1999. Rhizobacterial growth and yield promotion of cucumber plants inoculated with Pythium aphanidermatum. Can. J. Plant Pathol. 21: 265-271.Google Scholar
  128. Van Peer R. and Schippers B. 1988. Plant growth responses to bacterization with selected Pseudomonas spp. strains and rhizosphere microbial development in hydroponic cultures. Can. J. Microbiol. 35: 456-463.Google Scholar
  129. Vedder-Weiss D., Jurkevitch E., Burdman S., Weiss D. and Okon Y. 1999. Root growth, respiration and beta-glucosidase activity in maize(Zea mays) and common bean(Phaseolus vulgaris) in-oculated with Azospirillum brasilense. Symbiosis 26: 363-377.Google Scholar
  130. Wang C., Knill E., Glick B.R. and Défago G. 2000. Effect of transferring 1-aminocyclopropane-1-carboxylic acid(ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its derivative CHA96 on their plant growth promoting and disease suppressive capacities. Can. J. Microbiol. 46: 898-907.Google Scholar
  131. Weller D.M. and Cook R.J. 1986. Increased growth of wheat by seed treatment with fluorescent pseudomonads, and implications of Pythium control. Can. J. Microbiol. 8: 328-334.Google Scholar
  132. Whiting S.N., De Souza M.P. and Terry N. 2001. Rhizosphere bac-teria mobilize Zn for hyperaccumulation by Thlaspi caerule-scens. Environ. Sci. Technol. 35: 3144-3150.Google Scholar
  133. Xu G.W. and Gross D.C. 1986. Field evaluations of the interactions among fluorescent Pseudomonads, Erwinia carotovora, and potato yields. Phytopathol. 76: 423-430.Google Scholar
  134. Xu H., Griffith M., Patten C.L. and Glick B.R. 1998. Isolation and characterization of an antifreeze protein with ice nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol. 44: 64-73.Google Scholar
  135. Xu Y., Yokota A., Sanada H., Hisamatsu M., Araki M., Cho H., Morinaga and Murooka Y. 1994. Enterobacter cloacae A105, isolated from the surface of root nodules of Astragalus sinicus cv. Japan, stimulates nodulation by Rhizobium huakuii bv. renge. J. Ferment. Bioeng. 77: 630-635.Google Scholar
  136. Zaady E.A., Perevoltsky A. and Okon Y. 1993. Promotion of plant growth by inoculum with aggregated and single cell suspensions of Azospirillum brasilense Cd. Soil Biol. Biochem. 25: 819-823.Google Scholar
  137. Zaady E. and Perevoltsky A. 1995. Enhancement of growth and establishment of oak seedlings(Quercus ithaburensis Decaisne) by inoculation with Azospirillum brasilense. For. Ecol. Manage. 72: 81-83.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • M. Lucy
    • 1
  • E. Reed
    • 1
  • Bernard R. Glick
    • 1
  1. 1.Department of BiologyUniversity of WaterlooOntarioCanada, N2L 3G1

Personalised recommendations