Advertisement

Antonie van Leeuwenhoek

, Volume 85, Issue 3, pp 191–198 | Cite as

Influence of nutrients on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442

  • M. Mataragas
  • E.H. Drosinos
  • E. Tsakalidou
  • J. Metaxopoulos
Article

Abstract

The aim of this study was to investigate the effect of complex nutrients on microbial growth and bacteriocin production, in order to improve bacteriocin synthesis during the growth cycle of Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. The fermentations were conducted at the optimum pH and temperature for bacteriocin production (pH 5.5±0.1 and temperature 25±0.1 °C). Because of their association with the final biomass, conditions favouring the increase of the produced biomass resulted in the increase of bacteriocin activity in the growth medium. Since the produced final biomass and the final concentration of the bacteriocins were associated with the amount of the carbon (glucose) and nitrogen source, better growth of the lactic acid bacterial strains favoured the increase of the specific bacteriocin production. Additionally, the bacteriocin production was influenced by carbon/nitrogen ratio.

Bacteriocins Batch fermentation Fermentor Lactic acid bacteria Nutrients 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aasen I.M., Moretro T., Katla T., Axelsson L. and Storro I. 2000. Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei CCUG 42687. Appl. Microbiol. Biotechnol. 53: 159-166.Google Scholar
  2. Baker R.C., Winkowski K. and Montville T.J. 1996. pH-controlled fermentors to increase production of leuconocin S by Leuconostoc paramesenteroides. Proc. Biochem. 31: 225-228.Google Scholar
  3. Barefoot S.F. and Klaenhammer T.R. 1983. Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl. Environ. Microbiol. 45: 1808-1815.Google Scholar
  4. Benthin S., Schulze U., Nielsen J. and Villadsen J. 1994. Growth energetics of Lactococcus cremoris FD1 during energy-, carbon-, and nitrogen-limitation in steady state and transient cultures. Chem. Eng. Sci. 49: 589-609.Google Scholar
  5. Biswas S.R., Ray P., Johnson M.C. and Ray B. 1991. Influence of growth conditions on the production of a bacteriocin, pediocin AcH, by Pediococcus acidilactici H. Appl. Environ. Microbiol. 57: 1265-1267.Google Scholar
  6. Bogovic-Matijasic B. and Rogelj I. 1998. Bacteriocin complex of Lactobacillus acidophilus LF221-production studies in MRS media at different pH values and effect against Lactobacillus helveticus ATCC 15009. Proc. Biochem. 33: 345-352.Google Scholar
  7. Daba H., Lacroix C., Huang J. and Simard R.E. 1993. Influence of growth conditions on production and activity of mesenterocin 5 by a strain of Leuconostoc mesenteroides. Appl. Microbiol. Biotechnol. 39: 166-177.Google Scholar
  8. De Vuyst L. and Vandamme E.J. 1992. Influence of the carbon source on nisin production in Lactococcus lactis subsp. lactis batch fermentations. J. Gen. Microbiol. 138: 571-578.Google Scholar
  9. De Vuyst L. and Vandamme E.J. 1993. Influence of the phosphorus and nitrogen source on nisin production in Lactococcus lactis subsp. lactis batch fermentations using a complex medium. Appl. Microbiol. Biotechnol. 40: 571-578.Google Scholar
  10. De Vuyst L. and Vandamme E.J. 1994. Bacteriocins of lactic acid bacteria: microbiology, genetics and applications. Blackie Academic and Professional, London.Google Scholar
  11. De Vuyst L., Callewaert R. and Crabbe K. 1996. Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin under unfavourable growth conditions. Microbiology 142: 817-827.Google Scholar
  12. Guerra N.P., Rua M.L. and Pastrana L. 2001. Nutritional factors affecting the production of two bacteriocins from lactic acid bacteria on whey. Int. J. Food Microbiol. 70: 267-281.Google Scholar
  13. Huot E., Barrena-Gonzalez C. and Petitdemange H. 1996. Tween 80 effect on bacteriocin synthesis by Lactococcus lactis subsp. cremoris J46. Lett. Appl. Miocrobiol. 22: 307-310.Google Scholar
  14. Jimenez-Diaz R., Rios-Sanchez R.M., Desmazeaud M., Barba J.L.R. and Piard J.C. 1993. Plantaricins S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO10 isolated from a green olive fermentation. Appl. Environ. Microbiol. 59: 1416-1424.Google Scholar
  15. Kim W.S., Hall R.J. and Dunn N.W. 1997. The effect of nisin concentration and nutrient depletion on nisin production of Lactococcus lactis. Appl. Microbiol. Biotechnol. 50: 429-433.Google Scholar
  16. Kozak W., Bardowski J. and Dobrzanski W.T. 1978. Lactostrepcins-acid bacteriocins produced by lactic streptococci. J. Dairy Res. 45: 247-257.Google Scholar
  17. Krier F., Revol-Junelles A.M. and Germain P. 1998. Influence of temperature and pH on production of two bacteriocins by Leuconostoc mesenteroides subsp. mesenteroides FR52 during batch fermentation. Appl. Microbiol. Biotechnol. 50: 359-363.Google Scholar
  18. Leroy F. and De Vuyst L. 2001. Growth of the bacteriocin-producing Lactobacillus sakei strain CTC 494 in MRS broth is strongly reduced due to nutrient exhaustion: a nutrient depletion model for the growth of lactic acid bacteria. Appl. Environ. Microbiol. 67: 4407-4413.Google Scholar
  19. Mataragas M., Metaxopoulos J., Galiotou M. and Drosinos E.H. 2003. Influence of pH and temperature by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Meat Sci. 64: 265-271.Google Scholar
  20. Merck Microbiology Manual 2000. Merck KgaA, Darmstadt, Germany.Google Scholar
  21. Messens W., Neysens P., Vansieleghem W., Vanderhoeven J. and De Vuyst L. 2002. Modeling growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in response to temperature and pH values used for sourdough fermentations. Appl. Environ. Microbiol. 68: 1431-1435.Google Scholar
  22. Parente E. and Hill C. 1992. A comparison of factors affecting the production of two bacteriocins from lactic acid bacteria. J. Appl. Bacteriol. 73: 290-298.Google Scholar
  23. Parente E., Brienza C., Ricciardi A. and Addario G. 1997. Growth and bacteriocin production by Enterococcus faecium DPC1146 in batch and continuous culture. J. Ind. Microbiol. Biotechnol. 18: 62-67.Google Scholar
  24. Tagg J.R., Dajani A.S. and Wannamaker L.W. 1976. Bacteriocins of Gram-positive bacteria. Bacteriol. Rev. 40: 722-755.Google Scholar
  25. Wilkinson L. 1990. Systat: The System for Statistics. Evanston, IL: Systat, Inc.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • M. Mataragas
    • 1
  • E.H. Drosinos
    • 1
  • E. Tsakalidou
    • 2
  • J. Metaxopoulos
    • 1
  1. 1.Laboratory of Food Quality Control and HygieneAgricultural University of AthensAthensGreece
  2. 2.Laboratory of Dairy Research, Department of Food Science and TechnologyAgricultural University of AthensAthensGreece

Personalised recommendations