Advertisement

Antonie van Leeuwenhoek

, Volume 85, Issue 2, pp 129–139 | Cite as

Isolation and characterization of a lipoxygenase from Pseudomonas 42A2 responsible for the biotransformation of oleic acid into (S)-(E)-10-hydroxy-8-octadecenoic acid

  • M. Busquets
  • V. Deroncelé
  • J. Vidal-Mas
  • E. Rodríguez
  • A. Guerrero
  • A. Manresa
Article

Abstract

The isolation of a new lipoxygenase-like (LOX-like) enzyme from Pseudomonas 42A2 and its characterization is described. The enzyme, located in the periplasm of the cell, which contained 0.55 mol of Fe2+ per mol of protein, is monomeric and has a molecular mass of 45 kDa. In the presence of oxygen, the enzyme converts oleic acid into (E)-10-hydroperoxy-8-octadecenoic acid (HPOD), which decomposes to the corresponding (E)-10-hydroxy-8-octadecenoic acid (HOD). The absolute configuration of this acid was determined as S on the basis of exciton-coupled CD data, and specific rotation and NMR analysis of the corresponding p-bromobenzoate derivative. The reaction in vivo leads to the dihydroxy derivative (E)-7,10-dihydroxy-8-octadecenoic acid (DHOD), so that the three hydroxy-fatty acids can be isolated from the culture medium. The activity of the enzyme was optimal between 25 and 30 °C and 44% of its activity still remained at 55 °C. Its optimal pH is 8.5–9; and the presence of magnesium ions increased LOX activity by 1.5. The activity of the LOX is highest in unsaturated fatty acids containing double bonds in position 9 (oleic, linoleic and linolenic acids), linoleic acid being preferred (100% activity) over linolenic (60.4%) and oleic acids (46%). However, kinetic studies showed that the affinity of the enzyme is similar for the three substrates.

Absolute configuration Biotransformation Lipoxygenase-like Hydroxy-fatty acids Oleic acid Pseudomonas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam W., Lukacs Z., Viebach K., Humpf H.U., Saha-Möller C.R. and Schreier P. 2000. Microscale determination of the absolute configuration of Aryl-substituted alcohols by the CD exciton chirality method. J. Org. Chem. 65: 186-190.Google Scholar
  2. Bastida J., de Andrés C., Culleré J., Busquets M. and Manresa A. 1999. Biotransformation of oleic acid into 10-hydroxy-8E-octadecenoic acid by Pseudomonas sp. 42A2. Biotechnol. Lett. 21: 1031-1035.Google Scholar
  3. Bergmeyer H.H., Gawehn K. and Grassl M. 1974. In: Bergmeyer H.H. (ed), Methods of Enzymatic Analysis. Vol. I.: Academic Press, New York, pp. 496-497.Google Scholar
  4. Bisakowski B., Kermasha S. and Klopfenstein M.L. 1995. Partial purified lipoxygenase from Fusarium oxysporum: Characterization and kinetic studies. Process Biochem. 30: 261-268.Google Scholar
  5. Bisakowski B., Atwal A.S. and Kermasha S. 2000. Characterization of lipoxygenase activity from a partially purified enzymic extract from Morchella esculenta. Process Biochem. 36: 1-7.Google Scholar
  6. Brash A.R. 1999. Lipoxygenases. Occurence, functions, catalysis, and acquisition of substrate. J. Biol. Chem. 274: 23679-23682.Google Scholar
  7. Brodowsky I.D. and Oliw E.H. 1993. Biosynthesis of 8R-hydroperoxylinoleic acid by fungus Laetisaria arvalis. Biochim. Biophys. Acta 1168: 68-72.Google Scholar
  8. Canela E.I. 1984. A free derivative program for non-linear regression analysis of enzyme kinetics to be used on small computers. Int. J. Biomed. Comp. 15: 121-130.Google Scholar
  9. De Andrés C., Mercadé E., Guinea J. and Manresa A. 1994. 7,10-Dihydroxy-8(E)-octadecenoic acid produced by Pseudomonas 42A2: evaluation of different cultural parameters of fermentation. World J. Microbiol. Biotechnol. 10: 106-108.Google Scholar
  10. Feussner I. and Wasternack C. 1998. Lipoxygenase catalyzed oxygenation of lipids. Fett (Lipid) 100: 146-152.Google Scholar
  11. Gardner H.W. and Hou C.T. 1999. All (S) stereoconfiguration of 7,10-dihydroxy-8(E)-octadecenoic acid from bioconversion of oleic acid by Pseudomonas aeruginosa. J. Am. Oil Chem. Soc. 76: 1151-1156.Google Scholar
  12. Gonnella N.C., Nakanishi K., Martin V.S. and Sharpless K.B. 1982. General method for determining absolute configurations of acyclic allylic alcohols. J. Am. Chem. Soc. 104: 3775-3776.Google Scholar
  13. Guerrero A., Casals I., Busquets M., Leon Y. and Manresa A. 1997. Oxidation of oleic acid to (E)-10-hydroperoxy-8-octadecenoic and (E)-10-hydroxy-8-octadecenoic acids by Pseudomonas sp 42A2. Biochim. Biophys, Acta 1347: 75-81.Google Scholar
  14. Harada N. and Nakanishi K. 1972. The exciton chirality method and its application to configurational and conformational studies of natural products. Acc. Chem. Res. 5: 257-263.Google Scholar
  15. Hartree E.P. 1972. Determination of protein: a modification of Lowry method that gives a linear photometric response. Anal. Biochem. 48: 422-427.Google Scholar
  16. Herman R.P. and Hamberg M. 1987. Properties of the soluble arachidonic acid 15-LOX and 15-hydroperoxide isomerase from oomycete Saprolegnia parasitica. Prostaglandins 34: 129-139.Google Scholar
  17. Hou C.T., Bagby M.O., Plattner R.D. and Koritala S. 1991. A novel compound, 7,10-dihydroxy-8(E)-octadecenoic acid from oleic acid by bioconversion. J. Am. Oil Chem. Soc. 68: 99-101.Google Scholar
  18. Humpf H.U., Berova N. and Nakanishi K. 1995. Allylic and homoallylic exciton coupled CD: a sensitive method for determining the absolute stereochemistry of natural products. J. Org. Chem. 60: 3539-3542.Google Scholar
  19. Husson F., Couturier A., Kermasha S. and Belin J. 1998. Induction and localization of a lipoxygenase from Fusarium proliferatum. J. Mol. Catal. B 5: 159-163.Google Scholar
  20. Iny D., Pinsky A., Cojocoru M. and Grossman S. 1993a. Lipoxygenase of Thermoactinomyces vulgaris, purification and characterization of reaction products. J. Biochem. 25: 1313-1323.Google Scholar
  21. Iny D., Grossman S. and Pinsky A. 1993b. Lipoxygenase of thermophilic bacteria Thermoactinomyces vulgaris-properties and study on the active site. Int. J. Biochem. 9: 1325-1330.Google Scholar
  22. Knothe G., Bagby M.O., Weisleder D. and Peterson R.E. 1994. Allylic mono-and di-hydroxylation of isolated double bonds with selenium dioxide-tert-butylhydroperoxide. NMR characterization of long chain enols, allylic and saturated 1,4 diols and enones. J. Chem. Soc. Perkin Trans. 2: 1661-1669.Google Scholar
  23. Koshino H., Togiya S., Yoshihara T., Sakamura S., Shimanuki T., Sato T. and Tajimi A. 1987. Four fungitoxic C-18 hydroxy unsaturated fatty acids from stromata of Epichloe typhina. Tetrahedron Lett. 28: 73-76.Google Scholar
  24. Kuhn H. 2000. Structural basis for the positional specificity of lipoxygenases. Prostaglandins Other Lipid Mediators 62: 255-270.Google Scholar
  25. Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 277: 680-685.Google Scholar
  26. Matsuda Y., Beppu T. and Arima K. 1978. Crystallization and positional specificity of hydroperoxidation of Fusarium lipoxygenase. Biochim. Biophys. Acta 530: 39-540.Google Scholar
  27. Mazur P., Meyers H.V., Nakamishi K., El-Zayat A.A.E. and Champe S.P. 1990. Structural elucidation of sporogenic fatty acid metabolites from Aspergillus nidulans. Tetrahedron Lett. 31: 3837-3840.Google Scholar
  28. Medina I., Saeed S. and Howell N. 1999. Enzymatic oxidative activity in Sardine (Sardina pichardus) and herring (Cuplea harengus) during chilling and correlation with quality. Eur. Food Res. Technol. 210: 34-38.Google Scholar
  29. Neu H.C. and Heppel L.A. 1964. On the surface localization of enzymes in Escherichia coli. Biochem. Biophys. Res. Commun. 17: 215-219.Google Scholar
  30. Nuñez A., Savary B.J., Foglia A. and Piazza G. 2002. Purification of lipoxygenase from Chlorella: Production of 9-and 13-hydroperoxide derivatives of linoleic acid. Lipids 37: 1027-1032.Google Scholar
  31. Oguri H., Hishiyama S., Sato O., Oishi T. and Hirama M. 1997. Synthetic study of ciguatoxin. Absolute configuration of the C2 hydroxy group. Tetrahedron 53: 3057-3072.Google Scholar
  32. Okuyama H., Ueno A., Enari D., Morita N. and Kusano T. 1998. Purification and characterization of 9-hexadecenoic acid cistrans isomerase from Pseudomonas Sp. strain E-3. Arch. Microbiol. 169: 29-35.Google Scholar
  33. Pérez-Gilabert M., Veldink G. and Vliegenthart J.F.G. 1998. Oxidation of dilinoleoyl phosphatidylcholine by lipoxygenases from soybean. Arch. Biochem. Biophys. 354: 18-23.Google Scholar
  34. Pérez-Gilabert M., Lopez-Nicolas J.M. and Carmona F.G. 2001. Purification of a novel lipoxygenase fron eggplant (Solanum melongena) fruit chloroplasts. Physiol. Plant. 111: 276-282.Google Scholar
  35. Salas J., Williams M., Harwood J. and Sanchez J. 1999. Lipoxygenase activity in olive (Olea europea) fruit. J. Am. Oil Chem. Soc. 76: 1163-1168.Google Scholar
  36. Satoh T., Matsuda Y., Takashio M., Satoh K., Beppu T. and Arima K. 1976. Isolation of lipoxygenase-like enzyme from Fusarium oxysporum. Appl. Biol. Chem. 40: 953-961.Google Scholar
  37. Shechter G. and Grossman S. 1983. Lipoxygenase from baker's yeast: purification and properties. Int. J. Biochem 15: 1295-1304.Google Scholar
  38. Shimahara K. and Hashizume Y. 1973. Properties of lipoxygenaselike enzyme produced by Pseudomonas strain A4. J. Ferment. Technol. 51: 183-189.Google Scholar
  39. Shimahara K. and Kajakozasshi K. 1964. Peroxidation of soy oil with lipoxygenase-like bacterium (gram-negative Bacillus) separated from garbage. Kogyo Kajakozasshi 67: 1164-1168.Google Scholar
  40. Silverstein E. and Byer P.D. 1964. Equilibrium reaction rates and mechanisms of bovine heart and rabbit muscle lactate dehydrogenases. J. Biol. Chem. 239: 3901-3907.Google Scholar
  41. Singer P., Ostreicher G. and Hogue P. 1973. Regulation of succinate dehydrogenase in higher plants. Plant Physiol. 52: 616-621.Google Scholar
  42. Su C. and Oliw H. 1998. Manganese lipoxygenase. Purification and characterization. J. Biol. Chem. 273: 13072-13079. Lipoxygenase with a catalytic mononuclear redox center. J. Biol. Chem. 275, 18830-18835.Google Scholar
  43. Sudharshan E., Srivasulu S. and Appu Rao A. 2000. pH-Induced domain interaction and conformational transition of lipoxygenase-1. Biochim. Biophys. Acta 1480: 13-22.Google Scholar
  44. Surrey P.K. 1964. Spectrophotometric method for determination of lipoxidase activity. Plant Physiol. 39: 65-70.Google Scholar
  45. Viegenthart J.F.G. and Veldink G.A. 1982. Lipoxygenases. In: Pryer W.A. (ed.), Free Radicals in Biology. Vol. 5. Academic Press, New York, pp. 29-64.Google Scholar
  46. Yamamoto S. 1992. Mammalian lipoxygenase: molecular structures and functions. Biochim. Biophys. Acta 1128: 117-131.Google Scholar
  47. Zimmerman D.C. and Vick B.A. 1974. Lipoxygenase in Chlorella pyrenoidosa. Lipids 8: 264-266.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • M. Busquets
    • 1
  • V. Deroncelé
    • 2
  • J. Vidal-Mas
    • 2
  • E. Rodríguez
    • 2
  • A. Guerrero
    • 1
  • A. Manresa
    • 2
  1. 1.Departamento de Bioquímica i Biologia Molecular, Facultat de QuímicaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Laboratori de Microbiologia, Facultat de FarmaciaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations