Antonie van Leeuwenhoek

, Volume 85, Issue 1, pp 1–8 | Cite as

Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock

  • M. Benincasa
  • A. Abalos
  • I. Oliveira
  • A. Manresa


Pseudomonas aeruginosa LBI isolated from petroleum-contaminated soil produced rhamnolipids (RLLBI) when cultivated on soapstock as the sole carbon source. HPLC–MS analysis of the purified culture supernatant identified 6 RL homologues (%): R2 C10 C10 28.9; R2 C10 C12:1 23.0; R1 C10 C10 23.4; R2 C10 C12 11.3; R2 C10 C12 7.9; R2 C10 C12 5.5. To assess the potential antimicrobial activity of the new rhamnolipid product, RLLBI, its physicochemical properties were studied. RLLBI had a surface tension of 24 mN m−1 and an interfacial tension of 1.31 mN m−1; the cmc was 120 mg l−1. RLLBI produced stable emulsions with hydrocarbons and vegetable oils. This product showed good antimicrobial behaviour against bacteria: MIC for Bacillus subtilis, Staphylococcus aureus and Proteus vulgaris was 8 mg l−1, for Streptococcus faecalis 4 mg l−1, and for Pseudomonas aeruginosa 32 mg l−1. RLLBI was active against phytopathogenic fungal species, MIC values of 32 mg l−1 being found against Penicillium, Alternaria, Gliocadium virens and Chaetonium globosum. Due to its physicochemical properties and antimicrobial behaviour, RLLBI could be used in bioremediation treatment and in the food, cosmetic and pharmaceutical industries.

Antimicrobial agent Biosurfactant HPLC–MS Liquid chromatography Mass spectrometry Physicochemical properties Pseudomonas aeruginosa Rhamnolipids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abalos A., Pinazo A., Infante R., Casals M., García F. and Manresa A. 2001. Physico chemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17: 1367-1371.Google Scholar
  2. Attwood D. and Florence A. 1983. Emulsions in Surfactants Synthesis, Chemistry, Pharmacy and Biology. Chapman and Hall, New York, pp. 469-566.Google Scholar
  3. Banat I., Makkar R. and Cameotra S. 2000. Potential commercial applications of microbial surfactants. Appl. Microbiol. and Biotechnol. 53: 495-508.Google Scholar
  4. Benincasa M., Abalos A., Moreira I. and Manresa A. 2002. Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J. Food Eng. 54: 283-288.Google Scholar
  5. Chandrasekaran E.V. and Bemiller J.N. 1980. Constituent analysis of glucosamonoglucans. In: Wrhiste L. and Wolfrom M.L. (eds), Methods in Carbohydrate Chemistry Vol. iii. Academic Press, New York, pp. 89-97.Google Scholar
  6. Desai J. and Banat I. 1997. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. 61: 47-64.Google Scholar
  7. Déziel E., Lépine F., Dennie D., Boismenu D., Mamer O. and Villemur R. 1999. Liquid chromatography/mass spectrometry analysis of mixture of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or napthalene. Biochim. Biophys. Acta 1440: 244-252.Google Scholar
  8. Espinel-Ingroff A. and Pfaller M.A. 1995. Antifungal agents and susceptibility testing. In: Murray P.R. (ed.), Manual of Clinical Microbiology, Cap X. Murray, PR, Washington, DC, pp. 1405-1415.Google Scholar
  9. Folch J., Lees M. and Sloane S.G. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497-509.Google Scholar
  10. Gerardin-Charbonier C.A., Molina S., Achilefeu L., Manresa A., Vinardell P. and Selve C. 1999. Preparation and antibiotic activity of monobactam analogues of nocardicins. Prep. Biochem. and Biotechnol. 29: 257-272.Google Scholar
  11. Guerra-Santos L., Kappeli O. and Fiechter A. 1984. Pseudomonas aeruginosa Biosurfactant production in continuous culture with glucose as carbon source. Appl. Environ. Microbiol. 48: 301-305.Google Scholar
  12. Haba E., Pinazo A., Jauregui O., Espuny M.J., Infante M.R. and Manresa A. 2003. Physico-chemical characterization and antimicrobial properties of the rhamnolipids products by Pseudomonas aeruginosa 47T2 NCIMB 40044. J. Surfactants Deterg. 6: 155-161.Google Scholar
  13. Itoh S., Honda H., Tomita F. and Suzuki T. 1971. Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin. J. Antibiotics 24: 855-859.Google Scholar
  14. Kitamoto D., Yanagishita H., Shinbo T., Nakane T., Kamisawa C. and Nakahara T. 1993. Surface active properties antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J. Biotechnol. 29: 91-96.Google Scholar
  15. Lang S. and Wagner F. 1993. Biological activities and applications. In: Kosaric N. (ed.), Biosurfactant Properties and Applications Vol. 48. Marcel Dekker, New York, pp. 251-269.Google Scholar
  16. Lang S. and Wullbrandt D. 1999. Rhamnose lipids biosynthesis, microbial production and application potential. Appl. Microbiol. Biotechnol. 51: 22-32.Google Scholar
  17. Lin S.C. 1996. Biosurfactants: Recent advances. J. Chem. Tech. Biotechnol. 66: 109-120.Google Scholar
  18. Lowry O.H., Rosebrought N.J., Farr A. and Randall R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 139: 265-274.Google Scholar
  19. Maier R. and Soberon-Chavez G. 2000. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl. Microbiol. Biotechnol. 54: 625-633.Google Scholar
  20. Mata-Sandoval J., Karns J. and Torrents A. 1999. High-performance liquid chromatography method for the characterization of rhamnolipids mixture produced by Pseudomonas aeruginosa UG2 on corn oil. J. Chromatogr. 864: 211-220.Google Scholar
  21. Rosen M. 1978. Surfactants and Interfacial Phenomena. Wiley and Sons. Pub. Wiley Interscience, New York, pp. 149-159.Google Scholar
  22. Rosenberg E. 1985. Microbial surfactants. Critical Rew. Biotechnol. 3: 109-132.Google Scholar
  23. Sim L., Ward O. and Li Z.Y. 1997. Production and characterisation of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J. Indus. Microbiol. Biotechnol. 19: 232-238.Google Scholar
  24. Syldatk C., Lang S. and Wagner F. 1985. Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas sp DSM 2874 grown on alkanes. Z. Naturforsch. 40c: 51-60.Google Scholar
  25. Tiehm A. 1994. Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl. Environ. Microbiol. 60: 258-263.Google Scholar
  26. Vollbrecht E., Rau U. and Lang S. 1999. Microbial conversion of vegetable oils into surface-active di-, tri-, and tetrasaccharide lipids (biosurfactants) by the bacterial strain Tsukamurella spec. Fett. Lipid. 101: 389-394.Google Scholar
  27. Woods G.L. and Washington J.A. 1995. Antibacterial susceptibility test: dilution and disk diffusion methods. In: Murray P.R. (ed.), Manual of Clinical Microbiology. Chap. X, Washington, DC, pp. 1327-1341.Google Scholar
  28. Zhang Y. and Miller R. 1992. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl. Environ. Microbiol. 60: 2101-2106.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • M. Benincasa
    • 1
  • A. Abalos
    • 2
  • I. Oliveira
    • 3
  • A. Manresa
    • 2
  1. 1.Dept. de Bioquímica e Tecnologia QuímicaUNESP/Campus de Araraquara, R.-Francisco Degni, s/n, AraraquaraBrazil
  2. 2.Dept. de Microbiologia i Parasitologia Sanitàries, Facultat de FarmàciaUniversitat de BarcelonaSpain
  3. 3.Coordenação de Engenharia QuímicaCEET/UnG, Praça Tereza CristinaGuarulhos, SPBrazil

Personalised recommendations