Acta Mathematica Hungarica

, Volume 103, Issue 1–2, pp 107–138

Gromov hyperbolicity through decomposition of metric spaces

  • José M. Rodríguez
  • Eva Tourís
Article
  • 64 Downloads

Abstract

We study the hyperbolicity of metric spaces in the Gromov sense. We deduce the hyperbolicity of a space from the hyperbolicity of its “building block components”. These results are valuable since they simplify notably the topology of the space and allow to obtain global results from local information. We also study how the punctures and the decomposition of a Riemann surface in Y-pieces and funnels affect the hyperbolicity of the surface.

Gromov hyperbolicity decomposition hyperbolic Riemann surfaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. V. Ahlfors, Conformal Invariants, McGraw-Hill (New York, 1973).MATHGoogle Scholar
  2. [2]
    V. Alvarez, D. Pestana and J. M. Rodríguez, Isoperimetric inequalities in Riemann surfaces of infinite type, Rev. Mat. Iber., 15 (1999), 353-427.MATHGoogle Scholar
  3. [3]
    V. Alvarez and J. M. Rodríguez, Structure theorems for Riemann and topological surfaces, J. London Math. Soc., to appear.Google Scholar
  4. [4]
    V. Alvarez, J. M. Rodríguez and V. A. Yakubovich, Subadditivity of p-harmonic “measure” on graphs, Michigan Math. J., 49 (2001), 47-64.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    J. W. Anderson, Hyperbolic Geometry, Springer (London, 1999).MATHGoogle Scholar
  6. [6]
    Z. M. Balogh and S. M. Buckley, Geometric characterizations of Gromov hyperbolicity, Invent. Math., to appear.Google Scholar
  7. [7]
    A. F. Beardon, The Geometry of Discrete Groups, Springer-Verlag (New York, 1983).MATHGoogle Scholar
  8. [8]
    L. Bers, An inequality for Riemann surfaces, in: Differential Geometry and Complex Analysis, H. E. Rauch Memorial Volume, Springer-Verlag (New York, 1985).Google Scholar
  9. [9]
    M. Bonk, J. Heinonen and P. Koskela, Uniformizing Gromov hyperbolic spaces, Astérisque, 270 (Paris, 2001).Google Scholar
  10. [10]
    P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Birkhäuser (Boston, 1992).MATHGoogle Scholar
  11. [11]
    A. Cantón, J. L. Fernández, D. Pestana and J. M. Rodríguez, On harmonic functions on trees, Potential Analysis, 15 (2001), 199-244.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press (New York, 1984).MATHGoogle Scholar
  13. [13]
    J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, in: Problems in Analysis, Princeton University Press (Princeton, 1970), pp. 195-199.Google Scholar
  14. [14]
    J. L. Fernández and M. V. Melián, Escaping geodesics of Riemannian surfaces, Acta Mathematica, 187 (2001), 213-236.MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    J. L. Fernández and J. M. Rodríguez, The exponent of convergence of Riemann surfaces. Bass Riemann surfaces, Ann. Acad. Sci. Fenn. Series AI, 15 (1990), 165-183.MATHGoogle Scholar
  16. [16]
    J. L. Fernández and J. M. Rodríguez, Area growth and Green's function of Riemann surfaces, Arkiv för Matematik, 30 (1992), 83-92.MATHCrossRefGoogle Scholar
  17. [17]
    E. Ghys and P. de la Harpe, Sur les groupes hyperboliques d'aprìs Mikhael Gromov, in: Progress in Mathematics, Volume 83, Birkhäuser (Boston, 1990).Google Scholar
  18. [18]
    M. Gromov, Hyperbolic groups, Essays in group theory, Edited by S. M. Gersten, M.S.R.I. Publ. 8, Springer (New York, 1987), 75-263.Google Scholar
  19. [19]
    M. Gromov (with appendices by M. Katz, P. Pansu and S. Semmes), Metric Structures for Riemannian and Non-Riemannnian Spaces, Progress in Mathematics, vol. 152, Birkhäuser (Boston, 1999).Google Scholar
  20. [20]
    I. Holopainen and P. M. Soardi, p-harmonic functions on graphs and manifolds, Manuscripta Math., 94 (1997), 95-110.MATHMathSciNetGoogle Scholar
  21. [21]
    M. Kanai, Rough isometries and combinatorial approximations of geometries of non-compact Riemannian manifolds, J. Math. Soc. Japan, 37 (1985), 391-413.MATHMathSciNetGoogle Scholar
  22. [22]
    M. Kanai, Rough isometries and the parabolicity of Riemannian manifolds, J. Math. Soc. Japan, 38 (1986), 227-238.MATHMathSciNetGoogle Scholar
  23. [23]
    M. Kanai, Analytic inequalities and rough isometries between non-compact Riemannian manifolds, Curvature and Topology of Riemannian manifolds (Katata, 1985), Lecture Notes in Math. 1201, Springer (New York, 1986), 122-137.Google Scholar
  24. [24]
    I. Kra, Automorphic Forms and Kleinian Groups, W. A. Benjamin (1972).Google Scholar
  25. [25]
    P. J. Nicholls, The Ergodic Theory of Discrete Groups, Lecture Notes Series 143, Cambridge University Press (Cambridge, 1989).MATHGoogle Scholar
  26. [26]
    F. Paulin, On the critical exponent of a discrete group of hyperbolic isometries, Diff. Geom. Appl., 7 (1997), 231-236.MATHMathSciNetCrossRefGoogle Scholar
  27. [27]
    A. Portilla, J. M. Rodríguez and E. Tourís, Gromov hyperbolicity through decomposition of metric spaces II, J. Geom. Anal., to appear.Google Scholar
  28. [28]
    A. Portilla, J. M. Rodríguez and E. Tourís, The topology of balls and Gromov hyperbolicity of Riemann surfaces, Diff. Geom. Appl., to appear.Google Scholar
  29. [29]
    B. Randol, Cylinders in Riemann surfaces, Comment. Math. Helv., 54 (1979), 1-5.MATHMathSciNetGoogle Scholar
  30. [30]
    J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Springer-Verlag (New York, 1994).MATHGoogle Scholar
  31. [31]
    J. M. Rodríguez, Isoperimetric inequalities and Dirichlet functions of Riemann surfaces, Publications Matemàtiques, 38 (1994), 243-253.MATHGoogle Scholar
  32. [32]
    J. M. Rodríguez, Two remarks on Riemann surfaces, Publications Matemàtiques, 38 (1994), 463-477.MATHGoogle Scholar
  33. [33]
    J. M. Rodríguez and E. Tourís, Simple closed geodesics determine the Gromov hyperbolicity of Riemann surfaces, to appear.Google Scholar
  34. [34]
    J. M. Rodríguez and E. Tourís, Gromov hyperbolicity of Riemann surfaces, to appear.Google Scholar
  35. [35]
    H. Shimizu, On discontinuous groups operating on the product of upper half-planes, Ann. of Math., 77 (1963), 33-71.MATHMathSciNetCrossRefGoogle Scholar
  36. [36]
    P. M. Soardi, Rough isometries and Dirichlet finite harmonic functions on graphs, Proc. Amer. Math. Soc., 119 (1993), 1239-1248.MATHMathSciNetCrossRefGoogle Scholar
  37. [37]
    D. Sullivan, Related aspects of positivity in Riemannian geometry, J. Diff. Geom., 25 (1987), 327-351.MATHMathSciNetGoogle Scholar

Copyright information

© Kluwer Academic Publisher/Akadémiai Kiadó 2004

Authors and Affiliations

  • José M. Rodríguez
    • 1
  • Eva Tourís
    • 1
  1. 1.Departamento de MatematicasUniversidad Carlos III de MadridLeganes, MadridSpain

Personalised recommendations