High Precision Image Centroid Computation via an Adaptive K-Winner-Take-all Circuit in Conjunction with a Dynamic Element Matching Algorithm for Star Tracking Applications

  • Alexander Fish
  • Dmitry Akselrod
  • Orly Yadid-Pecht
Article

Abstract

An approach for implementing a high precision image target centroid—center of mass (COM) detection system via an adaptive K-winner-take-all (WTA) circuit in conjunction with a 2-D dynamic element matching (DEM) algorithm implementation for image sensor arrays is proposed. The proposed system outputs a high precision COM location of the most salient target in a programmable active region of the field of view (FOV) for star tracking purposes and is suitable for real time applications. The system allows target selection and locking with multiple targets tracking capability. This solution utilizes the separability property of the COM, and therefore reduces the computational complexity by utilizing 1-D circuits for the computation. The DEM algorithm, commonly used in ADC and DAC circuits, allows reducing the required WTA circuit precision to 5–6 bits, while still achieving a high output precision. Simulation results prove the concept and demonstrate the high precision COM result. In addition, a possible low-level hardware implementation is described.

APS CMOS imager center of mass COM centroid K-WTA circuit K-Winner-take-all circuit dynamic element matching DEM star-tracking image processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Brajovic and T. Kanade, “Computational sensor for visual tracking with attention.” IEEE Journal of Solid-State Circuits, vol. 33, no. 8, Aug. 1998.Google Scholar
  2. 2.
    A. Fish, D. Turchin, and O. Yadid-Pecht, “An APS with 2-Dimensional winner-take-all selection employing adaptive spatial filtering and false alarm reduction.” IEEE Trans. on Electron Devices, Special Issue on Image Sensors, pp. 159–165, Jan. 2003.Google Scholar
  3. 3.
    T.G. Morris, T.K. Horiuchi, and S.P. DeWeerth, “Object-based selection within an analog VLSI visual attention system.” IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 45, no. 12, Dec. 1998.Google Scholar
  4. 4.
    T. Horiuchi and E. Niebur, “Conjunction search using a 1-D, analog VLSI-based, attentional search/tracking chip.” In Proc. ARVLSI Conference, Atlanta, 1999, pp. 276–290.Google Scholar
  5. 5.
    G. Indiveri, “Neuromorphic analog VLSI sensor for visual tracking: Circuits and application examples.” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 46, no. 11, pp. 1337–1347, 1999.Google Scholar
  6. 6.
    G. Indiveri, P. Oswald, and J. Kramer, “An adaptive visual tracking sensor with a hysteretic winner-take-all network.” In Proc. IEEE International Symposium on Circuits and Systems, Scottsdale Arizona, USA, May 2002.Google Scholar
  7. 7.
    C. Koch and B. Mathur, “Neuromorphic vision chips.” IEEE Spectrum, vol. 33, pp. 38–46, May 1996.Google Scholar
  8. 8.
    T.G. Morris and S.P. DeWeerth, “Analog VLSI excitatory feedback circuits for attentional shifts and tracking.” Analog Integrated Circuits and Signal Processing, vol. 13, pp. 79–92, May/June 1997.Google Scholar
  9. 9.
    T. Horiuchi, T. Morris, C. Koch, and S. DeWeerth, “Analog VLSI circuits for attention-based, visual tracking.” In Advances in Neural Information Processing Systems, M.C. Mozer, M.I. Jordan, and T. Petsche (Eds.). MIT Press: Cambridge, MA, 1997, vol. 9.Google Scholar
  10. 10.
    M. Clapp and R. Etienne-Cummings, “A dual pixel-type imager for imaging and motion centroid localozation.” In Proc. ISCAS'01, Sydney, Australia, May 2001.Google Scholar
  11. 11.
    T. Shibata, T. Nakai, N. Mei Yu, Y. Yamashita, M. Konda, and T. Ohmi, “Advances in Neuron-MOS applications.” In ISSCC Proc., 1996, pp. 304–305.Google Scholar
  12. 12.
    S.P. DeWeerth, “Analog VLSI circuits for sensorimotor feedback.” Ph.D thesis, Caltech, Pasadena, CA, 1991.Google Scholar
  13. 13.
    M. Tartagni and P. Perona, “Computing centroids in currentmode technique.” Electronic Letters, vol. 29, no. 21, pp. 1811–1813, 1993.Google Scholar
  14. 14.
    N. Mei Yu, T. Shibata, and T. Ohmi, “A real-time center-ofmass tracker circuit implemented by neuron MOS technology.” IEEE Transactions on Circuits and Systems-II, vol. 45, no. 4, April 1998.Google Scholar
  15. 15.
    R.C. Meitzler, K. Strohbehn, and A.G. Andreou, “Asilicon retina for 2-D position and motion computation.” In Proc. ISCAS'95, New York, USA, 1995.Google Scholar
  16. 16.
    C. Sun, G. Yang, C. Wrigley, O. Yadid-Pecht, and B. Pain, “A smart CMOS imager with on-chip high-speed windowed centroiding capability.” In Proc. IEEE Workshop on CCDs and Advanced Image Sensors, Karuizawa, Japan, June 10-12, 1999.Google Scholar
  17. 17.
    S.P. DeWeerth, “Analog VLSI circuits for stimulus localization and centroid computation.” Int. J. of Comp. Vision, vol. 8, no. 3, pp. 191–202, 1992.Google Scholar
  18. 18.
    T. Komuro, I. Ishii, M. Ishikawa, and A. Yoshida, “A digital vision chip specialized for high-speed target tracking.” IEEE Trans. on Electron Devices, Special Issue on Image Sensors, pp. 191–199, Jan. 2003.Google Scholar
  19. 19.
    T.G. Morris and S.P. DeWeerth, “Analog VLSI excitatory feedback circuits for attentional shifts and tracking.” Analog Integrated Circuits and Signal Processing, vol. 13, pp. 79–92, May/June 1997.Google Scholar
  20. 20.
    J. Lazzaro, S. Ryckebusch, M.A. Mahowald, and C.A. Mead, “Winner-tale-all networks of O(n) complexity.” In D.S. Touretzky (Ed.), Morgan Kaumann: San Mateo, CA, 1989, vol. 1, pp. 703–711.Google Scholar
  21. 21.
    J.A. Startzyk and X. Fang, “CMOS Current mode winner-takeall circuit with both excitatory and inhibitory feedback.” Electronics Letters, vol. 29, no. 10, 13th May 1993.Google Scholar
  22. 22.
    M.A.C. Maher, S.P. Deweerth, M.A. Mahowald, and C.A. Mead, “Implementing neural architectures using analog VLSI circuits.” IEEE Trans. Circuits Syst., vol. CAS-36, pp. 643–652, 1989.Google Scholar
  23. 23.
    O.Yadid-Pecht, E.R. Fossum, and C. Mead, “APS image sensors with a winner-take-all (WTA) mode of operation.” JPL/Caltech New Technology Report, NPO 20212.Google Scholar
  24. 24.
    Z. Kalayjian, J. Waskiewicz, D. Yochelson, and A.G. Andreou, “Asynchronous sampling of 2D arrays using winner-takes-all arbitration.” In IEEE, ISCAS 96, NY, USA, vol. 3, pp. 393–396, 1996.Google Scholar
  25. 25.
    R. Perfetti, “On the robust design of k-winners-take-all networks.” IEEE Transactions on Circuits and Systems-II: Analog and-Digital-Signal-Processing, Jan. 1995.Google Scholar
  26. 26.
    V.D. Plassche, “Precision current-source arrangement.” Patent no. #US3982172, U.S. Philips Corporation, Sept. 21, 1976.Google Scholar
  27. 27.
    V.D. Plassche, “Source dynamic element matching for high-accuracy monolithic D/A converters.” IEEE Journal High Precision Image Centroid Computation via an Adaptive K-Winner-Take-all Circuit 265 of Solid-State Circuits, vol. SC-11, no. 6, pp. 795–800, 1976.Google Scholar
  28. 28.
    H.S. Jackson, “Circuit and method for canceling nonlinearity error associated with component value mismatches in a data converter.” U.S. Patent 5 221 926, June 22, 1993.Google Scholar
  29. 29.
    D. Akselrod, A. Fish, and O. Yadid-Pecht, “A mixed signal enhanced WTA tracking system via 2-D dynamic element matching.” In Proc. ISCAS'02, Arizona, USA, May 2002.Google Scholar
  30. 30.
    J.C. Candy, “A use of double integration in sigma-delta modulation.” IEEE Trans. Commun., vol. 33, no. 3, pp. 249–258, 1985.Google Scholar
  31. 31.
    L.R. Carley, “A noise-shaping coder topology for 15+ bit converters.” IEEE J. Solid-State Circuits, vol. SC-24, pp. 267–273, April 1989.Google Scholar
  32. 32.
    L.R. Carley and J. Kenney, “A 16-bit 4'th order noise-shaping D/A converter.” In Proceedings of the IEEE 1988 Custom Integrated Circuits Conference, Rochester, NY, May 1988, pp. 21.7.1–21.7.4.Google Scholar
  33. 33.
    Y. Sakina, “Multi-bit SD analog-to-digital converters with nonlinearity correction using dynamic barrel shifting.” Electronics Research Laboratory, College of Engineering, University of California, Berkley CA, Memorandum No. UCB/ERL M93/63, 1993.Google Scholar
  34. 34.
    B.H. Leung and S. Sutarja, “Multibit sigma-Delta A/D converter incorporating a novel class of dynamic element matching techniques.” IEEE Trans. Circuits Syst. II, vol. 39, p. 35–51, Jan. 1992.Google Scholar
  35. 35.
    R.W. Adams and T.W. Kwan, “Data-directed scrambler for multi-bit noise shaping D/A converters.” U.S. Patent 5404142, April 4, 1995.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Alexander Fish
    • 1
  • Dmitry Akselrod
    • 2
  • Orly Yadid-Pecht
    • 1
  1. 1.The VLSI Systems CenterBen-Gurion UniversityBeer-ShevaIsrael
  2. 2.Motorola SemiconductorHerzliaIsrael

Personalised recommendations