Algebra and Logic

, Volume 43, Issue 2, pp 94–101 | Cite as

Relatively Hyperimmune Relations on Structures

  • S. S. Goncharov
  • C. F. McCoy
  • J. F. Knight
  • V. S. Harizanov


Let \({\mathcal{A}}\) be a computable structure and let R be an additional relation on its domain. We establish a necessary and sufficient condition for the existence of an isomorphic copy \({\mathcal{B}}\) of \({\mathcal{A}}\) such that the image of R\(\neg R\) is h-simple (h-immune) relative to \({\mathcal{B}}\).

computable structure relatively hyperimmune relation relatively hypersimple relation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. I. Soare,Recursively Enumerable Sets and Degrees,A Study of Computable Functions and Computably Generated Sets, Springer, Berlin (1987).Google Scholar
  2. 2.
    J. C. E. Dekker,“A theorem on hypersimple sets,”Proc.Am.Math.Soc.,5, No.5,791–796 (1954).Google Scholar
  3. 3.
    C. G. Jockusch,Jr.,“Semirecursive sets and positive reducibility,” Trans.Am.Math.Soc.,131,No.2,420–436 (1968).Google Scholar
  4. 4.
    G. Hird,“Recursive properties of intervals of recursive linear orders,”in Logical Methods, J. N. Cross-ley, J. B. Remmel, R. A. Shore,and M. E. Sweedler (eds.),Birkhauser, Boston (1993),pp.422–437.Google Scholar
  5. 5.
    J. B. Remmel,“Recursive isomorphism types of recursive Boolean algebras,”J.Symb.Log.,46, No.3, 572–594 (1981).Google Scholar
  6. 6.
    S. S. Goncharov, V. S. Harizanov, J. F. Knight,and C. McCoy,“Simple and immune relations on countable structures,”Arch.Math.Log.,42, No.3, 279–291 (2003).Google Scholar
  7. 7.
    G. R. Hird,“Recursive properties of relations on models,”Ann.Pure Appl.Log.,63, No.3,241–269 (1993).Google Scholar
  8. 8.
    V. S. Harizanov,“Turing degrees of hypersimple relations on computable structures,”Ann.Pure Appl.Log.,121, No.2,209–226 (2003).Google Scholar
  9. 9.
    C. J. Ash and J. F. Knight,Computable Structures and the Hyperarithmetical Hierarchy, Elsevier, Amsterdam (2000).Google Scholar
  10. 10.
    C. Ash, J. Knight, M. Manasse,and T. Slaman,“Generic copies of countable structures,”Ann.Pure Appl.Log.,42, No.3,195–205 (1989).Google Scholar
  11. 11.
    J. Chisholm,“Effective model theory vs.recursive model theory,”J.Symb.Log.,55, No.3,1168–1191 (1990).Google Scholar
  12. 12.
    A. Nerode and J. B. Remmel,“A survey of lattices of r.e.substructures,”in Recursion Theory,Proc. Symp.Pure Math.,Vol.42,A. Nerode and R. Shore (eds.), Am.Math.Soc., Providence,RI (1985), pp.323–375.Google Scholar
  13. 13.
    J. F. Knight,“Degrees coded in jumps of orderings,” J.Symb.Log., 51, No.4, 1034–1042 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • S. S. Goncharov
    • 1
  • C. F. McCoy
    • 2
  • J. F. Knight
    • 3
  • V. S. Harizanov
    • 4
  1. 1.Institute of Mathematics SB RASNovosibirskRussia
  2. 2.Department of MathematicsUniversity of WisconsinMadison, MadisonUSA
  3. 3.Department of MathematicsUniversity of Notre DameNotre DameUSA
  4. 4.Department of MathematicsThe George Washington UniversityWashingtonUSA

Personalised recommendations