Agroforestry Systems

, Volume 61, Issue 1–3, pp 51–63 | Cite as

Short-rotation woody crops and phytoremediation: Opportunities for agroforestry?

  • D.L. Rockwood
  • C.V. Naidu
  • D.R. Carter
  • M. Rahmani
  • T.A. Spriggs
  • C. Lin
  • G.R. Alker
  • J.G. Isebrands
  • S.A. Segrest


Worldwide, fuelwood demands, soil and groundwater contamination, and agriculture's impact on nature are growing concerns. Fast growing trees in short rotation woody crop (SRWC) systems may increasingly meet societal needs ranging from renewable energy to environmental mitigation and remediation. Phytoremediation, the use of plants for environmental cleanup, systems utilizing SRWCs have potential to remediate contaminated soil and groundwater. Non-hyperaccumulating, i.e., relatively low contaminant concentrating, species such as eucalypts (Eucalypts spp.), poplars (Populus spp.), and willows (Salix spp.) may phytoremediate while providing revenue from fuelwood and other timber products. Effective phytoremediation of contaminated sites by SRWCs depends on tree-contaminant interactions and on tree growth as influenced by silvicultural, genetic, and environmental factors. Locally adapted trees are essential for phytoremediation success. Among the different agroforestry practices, riparian buffers have the greatest opportunity for realizing the SRWC and phytoremediation potentials of fast growing trees. Agroforestry that combines SRWC and phytoremediation could be an emerging holistic approach for sustainable energy, agricultural development, and environmental mitigation globally.

Eucalyptus Fuelwood Populus Riparian buffers Shelterbelts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alker G.R., Godley A.R. and Hallett J.E. 2002. Landfill Leachate Management Using Short Rotation Coppice Final Technical Report. WRC Report No. CO 5126. 201 pp. Scholar
  2. Aronsson P. and Perttu K. 2001. Willow vegetation filters forwastewater treatment and soil remediation combined with biomassproduction. Forest Chron 77: 293–299.Google Scholar
  3. Buck M.G. 1986 Concepts of resource sharing in agroforestry systems. Agroforest Syst 4: 191–203.CrossRefGoogle Scholar
  4. Dickmann D.I., Isebrands J.G., Eckenwalder J.E. and Richardson J. 2001. Poplar culture in North America. NRC Press, Ottawa, Canada. 397 pp.Google Scholar
  5. Douchette W., Chard J., Chard B., Fabrizius H., Crouch C. and Gorder K. 2004. Trichloroethylene in fruits and vegetables: Preliminary field survey results. In: Magar V.S. and Kelley M.E. (eds), In Situ and On-Site Bioremediation-2003. Proceedings of the Seventh International In Situ and On-Site Bioremediation Symposium, June 2–5, 2003, Orlando, FL, Paper F-15, Battelle Press, Columbus, OH.Google Scholar
  6. El Bassam N. 1998. Energy plant species: Their use and impact on environment and development. James & James Science Publishers, London, UK. 334 pp.Google Scholar
  7. Ettala M.O. 1987. Influence of irrigation with leachate on biomass production and evapotranspiration on a sanitary landfill. Aqua Fennica 17(1): 69–86.Google Scholar
  8. FAO 1996. Wood Energy News 11(2). Food and Agricultural Organization Regional Office for Asia, Bangkok, Thailand.–2.html.Google Scholar
  9. FAO 2003. State of the World' Forests. Food and Agricultural Organization of the United Nations, Rome. Scholar
  10. Garrett H.E. and Buck L. 1997 Agroforestry practice and policy in the United States of America. For Ecol Manag 91: 5–15.CrossRefGoogle Scholar
  11. Glass D.J. 1999. U.S. and International Markets for Phytoremediation, 1999–2000. INFO/phy99exc.htm. (9 June 2003).Google Scholar
  12. Gordon A.M., McBride R.A. and Fisken A.J. 1989. The effects of landfill leachate spraying on foliar nutrient concentrations and leaf transpiration in a northern hardwood forest. Canada Forestry 6: 19–28.Google Scholar
  13. Gustavsson L., Börjesson P., Johansson B. and Svenningsson P. 1995. Reducing CO2 emissions by substituting biomass for fossil fuels. Energy 20: 1097–1113.CrossRefGoogle Scholar
  14. Gustavsson L. and Börjesson P. 1998. CO2 mitigation cost Bioenergysystem and natural gas system with decarbonisation. Energy Policy 29: 699–713.CrossRefGoogle Scholar
  15. Hall D.O., House J. and Scrase I. 1999. Introduction. In: Rosillocalle F, Bajay S and Rothman H (eds), Industrial uses of biomass energy. The example of Brazil. Taylor and Francis, London. 304 pp.Google Scholar
  16. Hasselgren K. 1998. Use of Municipal Wastewater in Short Rotation Energy Forestry-Full Scale Application. pp. 835–838. In: Biomass for Energy and Industry. 10th European Conference and Technology Exhibition 8–11 June, Würzburg, Germany.Google Scholar
  17. Horgan G.P. 2002.Wood energy economics. Unasylva 53(4): 23–27.Google Scholar
  18. Hytönen J. 1994. Effect of fertilizer application rate on nutrient status and biomass production in short rotation plantations of willows on cut away peatland areas. Suo 45(3): 65–77.Google Scholar
  19. Isebrands J.G. and Karnosky D.F. 2001. Environmental benefits of poplar culture. pp. 207–218. In: Dickmann D.I., Isebrands J.G., Eckenwalder J.E. and Richardson J. (eds), Poplar Culture in North America. Part A, Chapter 6. NRC Research Press, National Research Council of Canada, Ottawa, Canada.Google Scholar
  20. Kamwenda G.L. 2002. Ngitili agrosilvipastoral systems in the United Republic of Tanzania. Unasylva 53(4): 46–50.Google Scholar
  21. Kopp R.F., Smart L.B., Maynard C.A., Isebrands J.G., Tuskan G.A. and Abrahamson L.P. 2001. The development of improved willow clones for eastern North America. Forest Chron 77: 287–292.Google Scholar
  22. Labrecque M., Tedodorescu T.I., Babeux P., Cogliastro A. and Daigle S. 1993. Growth patterns and biomass productivity of two Salix species grown under short rotation, intensive culture in southwestern Quebec. Biomass Bioenergy 4: 419–425.CrossRefGoogle Scholar
  23. Labrecque M., Tedodorescu T.I., Babeux P., Cogliastro A. and Daigle S. 1994. Impact of herbaceous competition and drainage conditions on the early productivity of willows and short rotation intensive culture. Can J For Res 24: 493–501.Google Scholar
  24. Labrecque M., Tedodorescu T.I. and Daigle S. 1997. Biomass productivity and wood energy of Salix species after two years growth in SRIC fertilized with waste water sludge. Biomass Bioenergy 12: 409–417.CrossRefGoogle Scholar
  25. Land S.B. Jr, Stine M., Rockwood D.L., Ma X., Warwell M.V. and Alker G.R. 2001. A tree improvement program for eastern cottonwood in the southeastern United States. pp. 84–93. In: Proc. 26th South. For. Tree Improvement Conf., June 26–29, 2001, Athens, GA.Google Scholar
  26. Licht L.A. 1994. Populus spp. (Poplar) capabilities and relationships to landfill water management. Paper 94WA86.02. pp. 19–22. In: Air and Waste Management Assn. 87th Annual Meeting. Cincinnati OH, June.Google Scholar
  27. Licht L.A. and Isebrands J.G. 2003. Linking phytoremediation pollutant removal to biomass economic opportunities. Biomass Bioenergy (In press).Google Scholar
  28. McNeely J.A. and Scherr S.J. 2003. Ecoagriculture: Strategies to Feed theWorld and SaveWild Biodiversity. Island Press, 296 pp.Google Scholar
  29. Nzengung V.A., Spriggs T., Tsangaris S. and Nwokike B. 2004. Phytoremediation of a chlorinated solvent plume in Orlando, Florida. In: Magar V.S. and Kelley M.E. (eds), In Situ and On-Site Bioremediation-2003. Proceedings of the Seventh International In Situ and On-Site Bioremediation Symposium. June 2–5, 2003, Orlando, FL, Paper F-13, Battelle Press, Columbus, OH.Google Scholar
  30. O'Neill G.J. and Gordon A.M. 1994. The nitrogen filtering capacity of Carolina poplar in an artificial riparian zone. J Environ Qual 23: 1218–1823.CrossRefGoogle Scholar
  31. Pathak P.S., Gupta S.K. and Debroy R. 1981. Production of aerial biomass in Leucaena leucocephala. Indian Forester 107: 416–419.Google Scholar
  32. Pisano S.M. and Rockwood D.L. 1997. Stormwater phytoremediation potential of Eucalyptus. pp. 32–42. In: Proceedings 5th. Biennial Stormwater Research Conference, Nov. 5–7, 1997, Tampa, FL. Southwest Florida Water Management District, Brooksville, FL.Google Scholar
  33. Rahmani M., Hodges A.W. and Kiker C.F. 1999. Optimal location for biomass conversion facilities in Florida: A Geographic Information System. pp. 91–97. In: Overend R.P. and Chornet E. (eds), Biomass: A Growth Opportunity in Green Energy and Value-Added Products, Proceedings of the Fourth Biomass Conference of the Americas, August 29–September 2, 1999, Oakland, CA, Elsevier Science, Oxford, UK.Google Scholar
  34. Riemenschneider D.E., Berguson W.E., Dickmann D.I., Hall R.B., Isebrands J.G., Mohn C.A., Stanosz G.R. and Tuskan G.A. 2001 Poplar breeding and testing strategies in the north-central U.S.: Demonstration of potential yield and consideration of future research needs. Forest Chron 77: 245–253.Google Scholar
  35. Rockwood D.L., Cardellino R., Alker G., Lin C., Brown N., Spriggs T., Tsangaris S., Isebrands J., Hall R., Lange R. and Nwokike B. 2004. Fast-growing trees for heavy metal and chlorinated solvent phytoremediation. In: Magar V.S. and Kelley M.E. (eds), In Situ and On-Site Bioremediation-2003. Proceedings of the Seventh International In Situ and On-Site Bioremediation Symposium, Orlando, FL, June 2–5, 2003, Paper F-12, Battelle Press, Columbus, OH.Google Scholar
  36. Rockwood D.L., Carter D.R., Alker G.R. and Morse D.M. 2002. Compost utilization for forest crops in Florida. In: Proc. Recycle Organics '02, Composting in the Southeast Conf. and Exposition, October 6–9, 2002, Palm Harbor, FL. Scholar
  37. Rockwood D.L., Ma L.Q., Alker G.R., Tu C. and Cardellino R.W. 2001. Phytoremediation of contaminated sites using woody biomass. Final Report to the Florida Center for Solid and Hazardous Waste Management, June 2001. 95 pp. Scholar
  38. Rockwood D.L., Pisano S.M. and McConnell W.V. 1996. Superior cottonwood and Eucalyptus clones for biomass production in waste bioremediation systems. pp. 254–261. In: Proc. Bioenergy 96, 7th National Bioenergy Conference, September 15–20, 1996, Nashville, TN.Google Scholar
  39. ecfpp_casestudies.html (9 July 2003).Google Scholar
  40. Schultz R.C., Collettii J.P., Isenhart T.M., Simpkins W.W., Mize C.W. and Thompson M.L. 1995 Design and placement of a multi-species riparian buffer strip system. Agrofor Syst 31: 117–132.CrossRefGoogle Scholar
  41. Segrest S.A. 2003 html (6 June 2003).Google Scholar
  42. Segrest S.A., Rockwood D.L., Stricker J.A. and Alker G.R 2001. Partnering to cofire woody biomass in central Florida. In: Abstracts 5th Biomass Conference of the Americas. 2 pp. z280.pdf.Google Scholar
  43. Stanton B., Eaton J., Johnson J., Rice D., Schuette B. and Moser B. 2002 Hybrid poplar in the Pacific Northwest: the effects of market-driven management. J For 100(4): 28–33.Google Scholar
  44. Stricker J.A., Rahmani M., Hodges A.W., Mishoe J.W., Prine G.M., Rockwood D.L. and Vincent A. 1995. Economic development through biomass systems integration in central Florida. Proceedings of the Second Biomass Conference of the Americas: Energy, Environment, Agriculture, and Industry, 1608–1617.Google Scholar
  45. Trossero M.A. 2002. Wood energy: the way ahead. Unasylva 53(4): 3–12.Google Scholar
  46. Tuskan G.A. and Walsh M.E. 2001 Short rotation woody crop systems, atmospheric carbon dioxide and management: A US case study. Forest Chron 77: 259–264.Google Scholar
  47. US Environmental Protection Agency 2003. Phytoremediation bibliography-online. US EPA. phyto/phytodoc.htm.Google Scholar
  48. WEC-FAO 1999. The challenge of rural energy poverty in developing countries world energy council. Food and Agriculture Organization of the United Nations, UK. 185 pp.Google Scholar
  49. Westphal L.M. and Isebrands J.G. 2001. Phytoremediation of Chicago's brownfields-consideration of ecological approaches and social issues. Proceedings Brownfields 2001 Conference, Chicago, Illinois. BB-11–02. proceedings2001/BB-11–02.pdf.Google Scholar
  50. Wilde E.W., Brigmon R.L., Berry C.J. and Altman D.J., Rossabi J., Harris S.P. and Newman L.A. 2003. Drip irrigation of TCE contaminated groundwater. In: Magar V.S. and Kelley M.E. (eds), In Situ and On-Site Bioremediation-2003. Proceedings of the Seventh International In Situ and On-Site Bioremediation Symposium, June 2–5, 2003, Orlando, FL, Paper F-10, Battelle Press, Columbus, OH.Google Scholar
  51. Wong M.H. and Lueng C.K. 1989. Landfill leachate as irrigation water for tree and vegetable crops. Waste Manage Res 7: 311–324.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • D.L. Rockwood
    • 1
  • C.V. Naidu
    • 1
  • D.R. Carter
    • 1
  • M. Rahmani
    • 2
  • T.A. Spriggs
    • 3
  • C. Lin
    • 4
  • G.R. Alker
    • 5
  • J.G. Isebrands
    • 5
  • S.A. Segrest
    • 6
  1. 1.School of Forest Resources and ConservationUniversity of FloridaGainesvilleUSA
  2. 2.Food and Resource Economics DepartmentUniversity of FloridaGainesvilleUSA
  3. 3.CH2M HillTampaUSA
  4. 4.Ecology & EnvironmentTallahasseeUSA
  5. 5.WRcSwindonUK
  6. 6.Common Purpose InstituteTemple TerraceUSA

Personalised recommendations