Advertisement

Annals of Global Analysis and Geometry

, Volume 26, Issue 1, pp 73–106 | Cite as

Continuity Properties for Modulation Spaces, with Applications to Pseudo-Differential Calculus, II

  • Joachim Toft
Article

Abstract

We discuss continuity for weighted modulation spaces, andprove that many such spaces can be obtained in a canonicalway from the corresponding standard modulation spaces. We also discussthe trace operator aa(0, ·) acting on modulationspaces. The results are used to get inclusions betweenmodulation spaces and Besov spaces, and proving continuityfor pseudo-differential operators and Toeplitz operators.

modulation spaces pseudo-differential operators Toeplitz operators trace theorems embeddings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergh, J. and Löfström, J.: Interpolation Spaces, An Introduction, Springer-Verlag, Berlin, 1976.Google Scholar
  2. 2.
    Boggiatto, P., Cordero, E. and Gröchenig, K.: Generalized anti-wick operators with symbols in distributional Sobolev spaces, Preprint, 2002.Google Scholar
  3. 3.
    Boggiatto, P.: Localization operators with L p symbols on modulation spaces, Dip. Mat. Univ. Torino (7), Turin, 2002.Google Scholar
  4. 4.
    Boggiatto, P.: Remarks on a Wiener type pseudodifferential algebra and Fourier integral operators, Math. Res. Lett. 4 (1997), 53-67.Google Scholar
  5. 5.
    Cordero, E. and Gröchenig, K.: Time-frequency analysis of localization operators, Preprint, 2002.Google Scholar
  6. 6.
    Czaja, W. and Rzeszotnik, Z.: Pseudodifferential operators and Gabor frames: Spectral asymptotics, Math. Nachr. 233/234 (2002), 77-88.Google Scholar
  7. 7.
    Dimassi, M. and Sjöstrand, J.: Spectral Asymptotics in the Semi-Classical Limit, London Math. Soc. Lecture Note Ser. 268, Cambridge University Press, Cambridge, 1999.Google Scholar
  8. 8.
    Feichtinger, H. G.: Weighted L p-spaces and the canonical mapping T H: L 1 (G)L 1 (G/H), Boll. Un. Mat. Ital. 16, (1979), 989-999.Google Scholar
  9. 9.
    Feichtinger, H. G.: Banach spaces of distributions of Wiener's type and interpolation, in: P. Butzer, B. Sz. Nagy and E. Görlich (eds), Proceedings of Conference Oberwolfach, Functional Analysis and Approximation, August 1980, Internat. Ser. Numer. Math. 69, Birkhäuser-Verlag, Basel, 1981, pp. 153-165.Google Scholar
  10. 10.
    Feichtinger, H. G.: Banach convolution algebras of Wiener's type, in: Proceedings Functions, Series, Operators, Budapest, Colloquia Math. Soc. J. Bolyai, North Holland, Amsterdam, 1980.Google Scholar
  11. 11.
    Feichtinger, H. G.: Modulation spaces on locally compact abelian groups, Technical Report, University of Vienna, Vienna, 1983.Google Scholar
  12. 12.
    Feichtinger, H. G.: Atomic characterizations of modulation spaces through Gabor-type representations, in: Proceedings of Conference on Constructive Function Theory, Edmonton, July 1986, 1989, pp. 113-126.Google Scholar
  13. 13.
    Feichtinger, H. G.: Generalized amalgams, with applications to Fourier transform, Canad. J. Math. (3) 42 (1990), 395-409.Google Scholar
  14. 14.
    Feichtinger, H. G. and Gröbner, P.: Banach spaces of distributions defined by decomposition methods, I, Math. Nachr. 123 (1985), 97-120.Google Scholar
  15. 15.
    Feichtinger, H. G. and Gröchenig, K. H.: Banach spaces related to integrable group representations and their atomic decompositions, I, J. Funct. Anal. 86 (1989), 307-340.Google Scholar
  16. 16.
    Feichtinger, H. G. and Gröchenig, K. H.: Banach spaces related to integrable group representations and their atomic decompositions, II, Monatsh. Math. 108 (1989), 129-148.Google Scholar
  17. 17.
    Feichtinger, H. G. and Gröchenig, K. H.: Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view, in: C. K. Chui (ed.), WaveletsA Tutorial in Theory and Applications, Academic Press, Boston, 1992, pp. 359-397.Google Scholar
  18. 18.
    Feichtinger, H. G. and Gröchenig, K. H.: Gabor frames and time-frequency analysis of distributions, J. Funct. Anal. (2) 146 (1997), 464-495.Google Scholar
  19. 19.
    Feichtinger, H. G. and Strohmer, T. (eds.): Gabor Analysis and Algorithms, Theory and Applications, Birkhäuser, Boston, 1998.Google Scholar
  20. 20.
    Folland, G. B.: Harmonic Analysis in Phase Space, Princeton Univ. Press, Princeton, NJ, 1989.Google Scholar
  21. 21.
    Gröbner, P.: Banachräume Glatter Funktionen und Zerlegungsmethoden, Thesis, University of Vienna, Vienna, 1983.Google Scholar
  22. 22.
    Gröchenig, K. H.: Describing functions: Atomic decompositions versus frames, Monatsh. Math. 112 (1991), 1-42.Google Scholar
  23. 23.
    Gröchenig, K. H.: Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.Google Scholar
  24. 24.
    Gröchenig, K. H. and Heil, C.: Modulation spaces and pseudo-differential operators, Integral Equations Operator Theory (4) 34 (1999), 439-457.Google Scholar
  25. 25.
    Gröchenig, K. H. and Heil, C.: Modulation spaces as symbol classes for pseudodifferential operators, Preprint.Google Scholar
  26. 26.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators, Vols I, III, Springer-Verlag, Berlin, 1983, 1985.Google Scholar
  27. 27.
    Heil, C., Ramanathan, J. and Topiwala, P.: Singular values of compact pseuodifferential operators, J. Funct. Anal. (2) 150 (1997), 426-452.Google Scholar
  28. 28.
    He, Z. and Wong, M. W.: Localization operators associated to square integrable group representations, Panamer. Math. J. (1) 6 (1996), 93-104.Google Scholar
  29. 29.
    Labate, D.: Pseudodifferential operators on modulation spaces, J. Math. Anal. Appl. 262 (2001), 242-255.Google Scholar
  30. 30.
    Okoudjou, K. A.: Embeddings of some classical Banach spaces into modulation spaces, Preprint, 2002.Google Scholar
  31. 31.
    Pilipovićc, S. and Teofanov, N.: Wilson bases and ultramodulation spaces, Math. Nachr. 242 (2002), 179-196.Google Scholar
  32. 32.
    Pilipovićc, S. and Teofanov, N.: On a symbol class of elliptic pseudodifferential operators, Bull. Acad. Serbe Sci. Arts 27 (2002), 57-68.Google Scholar
  33. 33.
    Rochberg, R. and Tachizawa, K.: Pseudo-differential operators, Gabor frames and local trigonometric bases, in: ■■ (ed.), Gabor Analysis and Algorithms, Birkhäuser, Boston, MA, 1998, pp. 171-192.Google Scholar
  34. 34.
    Schulze, B.W.: Boundary Value Problems and Singular Pseudo-Differential Operators, Wiley, Chichester, 1998.Google Scholar
  35. 35.
    Shubin, M. A.: Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, 1987.Google Scholar
  36. 36.
    Simon, B.: Trace Ideals and Their Applications I, London Math. Soc. Lecture Note Series, Cambridge University Press, Cambridge, 1979.Google Scholar
  37. 37.
    Sjöstrand, J.: An algebra of pseudodifferential operators, Math. Res. Lett. 1 (1994), 185-192.Google Scholar
  38. 38.
    Sjöstrand, J.: Wiener Type Algebras of Pseudodifferential Operators, Séminaire Equations aux Dérivées Partielles, Ecole Polytechnique, 1994/1995, Exposé No. IV.Google Scholar
  39. 39.
    Tachizawa, K.: The boundedness of pseudo-differential operators on modulation spaces, Math. Nachr. 168 (1994), 263-277.Google Scholar
  40. 40.
    Toft, J.: Continuity and positivity problems in pseudo-differential calculus, Thesis, Department of Mathematics, University of Lund, Lund, 1996.Google Scholar
  41. 41.
    Toft, J.: Subalgebras to aWiener type algebra of pseudo-differential perators, Ann. Inst. Fourier (5) 51 (2001), 1347-1383.Google Scholar
  42. 42.
    Toft, J.: Continuity properties for non-commutative convolution algebras with applications in pseudo-differential calculus, Bull. Sci. Math. (2) 126 (2002), 115-142.Google Scholar
  43. 43.
    Toft, J.: Modulation spaces and pseudo-differentianl operators, Research Report 2002:05, Blekinge Institute of Technology, Karlskrona, 2002.Google Scholar
  44. 44.
    Toft, J.: Modulation spaces of non-standard type and pseudo-differential operators, Research Report 2003:01, Blekinge Institute of Technology, Karlskrona, 2003.Google Scholar
  45. 45.
    Toft, J.: Weighted modulation spaces and pseudo-differential operators, Research Report 2003:05, Blekinge Institute of Technology, Karlskrona, 2003.Google Scholar
  46. 46.
    Toft, J.: Continuity properties for modulation spaces with applications in pseudo-differential calculus, J. Funct. Anal. (2) 207 (2004), 399-429.Google Scholar
  47. 47.
    Toft, J.: Convolutions and embeddings for weighted modulation spaces, in: P. Boggiatto, R. Ashino, M. W. Wong (eds), Advances in Pseudo-Differential Operators, Proceedings of the Fourth ISAAC Congress, Operator Theory: Advances and Applications, Birkhäuser Verlag, Basel, 2004.Google Scholar
  48. 48.
    Triebel, H.: Modulation spaces on the Euclidean n-space, Z. Anal. Anwendungen (5) 2 (1983), 443-457.Google Scholar
  49. 49.
    Wong, M. W.: Weyl Transforms, Springer-Verlag, Berlin, 1998.Google Scholar
  50. 50.
    Wong, M. W.: Localization operators on the Weyl-Heisenberg group, in: R. S. Pathak (ed.), Geometry, Analysis and Applications, World Scientific, Singapore, 2001, pp. 303-314.Google Scholar
  51. 51.
    Wong, M. W.: Wavelet Transform and Localization Operators, Birkhäuser, Boston, MA, 2002.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Joachim Toft
    • 1
  1. 1.School of Mathematics and Systems EngineeringVäxjö UniversitySweden

Personalised recommendations