Advertisement

Aquatic Ecology

, Volume 37, Issue 4, pp 377–391 | Cite as

The structuring role of free-floating versus submerged plants in a subtropical shallow lake

  • Mariana Meerhoff
  • Néstor Mazzeo
  • Brian Moss
  • Lorena Rodríguez-Gallego
Article

Abstract

In shallow temperate lakes many ecological processes depend on submerged macrophytes. In subtropical and tropical lakes, free-floating macrophytes may be equally or more important. We tested the hypothesis that different macrophyte growth forms would be linked with different bottom-up and top-down mechanisms in out-competing phytoplankton. We compared experimentally the effects of submerged and free-floating plants on water chemistry, phytoplankton biomass, zooplankton and fish community structure in a shallow hypertrophic lake (Lake Rodó, 34°55′S 56°10′W, Uruguay). Except for the retention of suspended solids, we found no other significant bottom-up process connected with either Eichhornia crassipes or Potamogeton pectinatus. Free-floating plants had a lower abundance of medium-sized zooplankton than any other microhabitat and submerged plants were apparently preferred by microcrustaceans. Fish showed a differential habitat use according to species, size-class and feeding habits. Dominant omnivore-planktivores, particularly the smallest size classes, preferred submerged plants. In contrast, omnivore-piscivores were significantly associated with free-floating plants. The density of omnivorous-planktivorous fish, by size class, significantly explained the distribution of medium-sized zooplankton, the high number of size 0 fish being the main factor. The abiotic environment and the structure of the zooplankton community explained little of the fish distribution pattern. Our results suggest that bottom-up effects of free-floating plants are weak when cover is low or intermediate. Top-down effects are complex, as effects on zooplankton and fish communities seem contradictory. The low piscivores:planktivores ratio in all microhabitats suggests, however, that cascading effects on phytoplankton through free-floating plant impacts on piscivorous fish are unlikely to be strong.

Alternative states Bottom-up Refuge effect Spatial distribution Top-down 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Public Health Association (APHA) 1985. Standard Methods for the Examination of Water and Wastewater. APHA/ AWWA/WPCF, Washington, USA.Google Scholar
  2. Balasooriya I., Paulraj P.J., Abeygunawardena S.I. and Nanayakkara C. 1984. Ecology of water hyacinth: physicochemical properties of water supporting Eichhornia crassipes (Mart) Solms. In: Thyagarajan G. (ed.), International Conference of Water Hyacinth, Hyderabad, India. United Nations Environmental Programme, Nairobi, pp. 318–333.Google Scholar
  3. Barko J.W. and James W.F. 1998. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation and resuspension. In: Jeppesen E., Søndergaard Ma., Søndergaard Mo. and Christoffersen K. (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer-Verlag, New York, NY, USA, pp. 197–214.Google Scholar
  4. Beklioglu M. and Moss B. 1996. Mesocosm experiments on the interaction of sediment influence, fish predation and aquatic plants with the structure of phytoplankton and zooplankton communities. Freshwater Biol. 36: 315–325.Google Scholar
  5. Brönmark C. 1989. Interactions between epiphytes, macrophytes and freshwater snails: a review. J. Moll. Studies 55: 299–311.Google Scholar
  6. Burks R., Lodge D.M., Jeppesen E. and Lauridsen T.L. 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biol. 47: 343–365.Google Scholar
  7. Cailliet G., Love M. and Ebeling A. 1986. Fishes: A Field and Laboratory Manual on Their Structure, Identification and Natural History. Wadsworth Publishing, Belmont, California, USA.Google Scholar
  8. Camargo A.F. and Esteves F.A. 1995. Biomass and productivity of aquatic macrophytes in Brazilian lacustrine ecosystems. In: Tundisi J.B., Bicudo C.E. and Matsumara-Tundisi T. (eds), Limnology in Brazil. ABC/SBL, Rio de Janeiro, Brazil, pp. 137–149.Google Scholar
  9. Canfield D.E. Jr, Shireman J.V., Colle D.E. and Haller W.T. 1984. Prediction of chlorophyll a concentrations in Florida lakes: importance of aquatic macrophytes. Can J. Fish. Aquat. Sci. 41: 497–501.Google Scholar
  10. DeBusk W.F. and Reddy K.R. 1987. Density requirements to maximize productivity and nutrient removal capability of water hyacinth. In: Reddy K.R. and Smith W.H. (eds), Aquatic Plants for Water Treatment and Resource Recovery. Magnolia Publishing, Orlando, USA, pp. 673–680.Google Scholar
  11. Delariva R.L., Agostinho A.A., Nakatani K. and Baumgartner G. 1994. Ichthyofauna associated to aquatic macrophytes in the upper Paraná River floodplain. UNIMAR 16: 41–60.Google Scholar
  12. Fernández O.A., Murphy K.J., López Cazorla A., Sabbatini M.R., Lazzari M.A., Domaniewski J.C.J. and Irigoyen J.H. 1998. Interrelationships of fish and channel environmental conditions with aquatic macrophytes in an Argentine irrigation system. Hydrobiologia 380: 15–25.Google Scholar
  13. Field J.G., Clarke K.R. and Warwick R.M. 1982. A practical strategy for analysing multispecies distribution patterns. Mar. Ecol. Prog. Ser. 8: 37–52.Google Scholar
  14. Huntley M. 1986. Experimental approaches to the study of vertical migration of zooplankton. Contrib. Mar. Sci. Suppl. 27: 2107–2114.Google Scholar
  15. Jacobsen L., Perrow M., Landkildehus F., Hjorne M., Lauridsen T. and Berg S. 1997. Interactions between piscivores, zooplanktivores and zooplankton in submerged macrophytes: preliminary observations from enclosure and pond experiments. Hydrobiologia 342/343: 197–205.Google Scholar
  16. James F.C. and McCulloch C.E. 1990. Multivariate analysis in ecology and systematics: panacea or Pandora’s box? Annu. Rev. Ecol. Syst. 21: 129–166.Google Scholar
  17. Jeppesen E., Lauridsen T., Kairesalo T. and Perrow M.R. 1998. Impact of submerged macrophytes on fish-zooplankton interactions in lakes. In: Jeppesen E., Søndergaard Ma., Søndergaard Mo. and Christoffersen K. (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer-Verlag, New York,New York, USA, pp. 91–114.Google Scholar
  18. Kim Y. and Kim W.-J. 2000. Roles of Water Hyacinth and their roots for reducing algal concentration in the effluent from waste stabilization ponds. Water Res. 34: 3285–3294.Google Scholar
  19. Kiørboe T. and Saiz E. 1995. Planktivorous feeding in calm and turbulent environments, with emphasis on copepods. Mar. Ecol. Prog. Ser. 122: 135–145.Google Scholar
  20. Koroleff F. 1970. Revised version of direct determination of ammonia in natural waters as indophenol blue. Int. Con. Explor. Sea C.M. 1969/C9. ICES. Information on techniques and methods for sea water analysis. Interlab Report 3: 19–22.Google Scholar
  21. Kramer D., Rangeley R. and Chapman L. 1997. Habitat selection: patterns of spatial distribution from behavioural decisions. In: Godin J.-G.J. (ed.), Behavioural Ecology of Teleost Fishes. Oxford University Press, Oxford, UK, pp. 37–80Google Scholar
  22. Lauridsen T.L. and Buenk I. 1996. Diel changes in the horizontal distribution of zooplankton in the littoral zone of two shallow eutrophic lakes. Arch. Hydrobiol. 137: 161–176.Google Scholar
  23. Lauridsen T.L. and Lodge D.M. 1996. Avoidance by Daphnia magna of fish and macrophytes: chemical cues and predator-mediated use of macrophyte habitat. Limnol. Oceanogr. 41: 794–798.Google Scholar
  24. Lauridsen T.L., Jeppesen E., Mitchell S.F., Lodge D.M. and Burks R.L. 1999. Horizontal distribution of zooplankton in lakes with contrasting fish densities and nutrient levels. Hydrobiologia 408/ 409: 241–250.Google Scholar
  25. Lauridsen T.L., Pedersen L.J., Jeppesen E. and Søndergaard Ma. 1996. The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. J. Plankton Res. 18: 2283–2294.Google Scholar
  26. Lazzaro X. 1997. Do the trophic cascade hypothesis and classical biomanipulation approaches apply to tropical lakes and reservoirs? Verh. Int. Ver. Limnol. 26: 719–730.Google Scholar
  27. Lobón-Cerviá J., Utrilla C.G., Querol E. and Puig M.A. 1993. Population ecology of pike-cichlid, Crenicichla lepidota, in two streams of the Brazilian Pampa subject to a severe drought. J. Fish. Biol. 43: 537–557.Google Scholar
  28. Magurran A.E. 1988. Ecological Diversity and its Measurement. Princeton University Press, Princeton, UK.Google Scholar
  29. Mazzeo N., Gorga J., Crosa D., Ferrando J. and Pintos W. 1995. Spatial and temporal variation of physicochemical parameters in a shallow reservoir seasonally covered by Pistia stratiotes L. in Uruguay. J. Freshwater Ecol. 10: 141–149.Google Scholar
  30. Mazzeo N., Rodríguez-Gallego L., Kruk C., Meerhoff M., Gorga J., Lacerot G., Quintans F., Loureiro M., Larrea D. and García-Rodríguez F. Effects of Egeria densa Planch beds in a shallow lake without piscivorous fish. Hydrobiologia (in press).Google Scholar
  31. Meerhoff M., Rodríguez-Gallego L. and Mazzeo N. 2002. Potentialities and limitations of Eichhornia crassipes (Mart) Solms in the restoration of subtropical hypertrophic systems. In: Fernández A. and Chalar G. (eds), Water in IberoAmerica: From Limnology to Management in South America. CYTED XVII, Buenos Aires, Argentina, pp. 61–74 (in Spanish).Google Scholar
  32. McQueen D.J. and Post J.R. 1988. Cascading trophic interactions: uncoupling at the zooplankton-phytoplankton link. Hydrobiologia 159: 277–296.Google Scholar
  33. Moss B. 1998. Ecology of Freshwaters. Man and Medium. Past to Future. Blackwell, Oxford, UK.Google Scholar
  34. Müller R. and Widemann O. 1955. Die Bestimmung des Nitrat-Ions in Wasser. Von Wasser 22: 247.Google Scholar
  35. Murphy J. and Riley J. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27: 31–36.Google Scholar
  36. Nusch E.A. 1980. Comparison of different methods for chlorophyll and phaeopigments determination. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14: 14–36.Google Scholar
  37. Perrow M.R., Jowitt A. and Zambrano González L. 1996. Sampling fish communities in shallow lowland lakes: point-sample electric fishing vs electric fishing within stop-nets. Fish Manag. Ecol. 3: 303–313.Google Scholar
  38. Perrow M.R., Jowitt A., Stansfield J. and Phillips G. 1999. The stability of fish communities in shallow lakes undergoing restoration: expectations and experiences from the Norfolk Broads (UK) Hydrobiologia 408/409: 85–100.Google Scholar
  39. Persson L. 1993. Predator-mediated competition in prey refuges: the importance of habitat dependent prey resources. Oikos 68: 12–22.Google Scholar
  40. Persson L. and Eklôv P. 1995. Prey refuges affecting interactions between piscivorous perch and juvenile perch and roach. Ecology 76: 70–81.Google Scholar
  41. Phillips G., Eminson D.F. and Moss B. 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat. Bot. 4: 103–126.Google Scholar
  42. Poi de Neiff A., Neiff J.J., Orfeo O. and Carignan R. 1994. Quantitative importance of particulate matter retention by the roots of Eichhornia crassipes (Mart.) Solms in the Paraná floodplain. Aquat. Bot. 47: 213–223.Google Scholar
  43. Quirós R. 1998. Fish effects on trophic relationships in the pelagic zone of lakes. Hydrobiologia 361: 101–111.Google Scholar
  44. Ricker W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 191: 1–382.Google Scholar
  45. Rodríguez-Gallego L., Mazzeo N., Gorga J., Meerhoff M., Clemente J., Kruk C., Scasso F., Lacerot G., García J. and Quintans F. Effects of an artificial wetland of free-floating plants on the restoration of a hypertrophic subtropical lake. Lakes Reserv. Res. Manage. (in press).Google Scholar
  46. Sazima I. and Zamprogno C. 1985. Use of water hyacinth as shelter, foraging place, and transport by young piranhas, Serrasalmus spilopleura. Env. Biol. Fishes 12: 237–240.Google Scholar
  47. Scasso F., Mazzeo N., Gorga J., Kruk C., Lacerot G., Clemente J., Fabián D. and Bonilla S. 2001. Limnological changes of a subtropical shallow hypertrophic lake during its restoration. Two years of whole-lake experiments. Aquat. Conserv.: Mar. Freshwater Ecosys. 11: 31–44.Google Scholar
  48. Scheffer M. 1998. Ecology of Shallow Lakes. Chapman & Hall, London, UK.Google Scholar
  49. Scheffer M., van der Berg M., Breukelaar A., Breukers C., Coops H., Doef R. and Meijer M.L. 1994. Vegetated areas with clear water in turbid shallow lakes. Aquat. Bot. 49: 193–196.Google Scholar
  50. Scheffer M., Hosper S.H., Meijer M.L., Moss B. and Jeppesen E. 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8: 275–279.Google Scholar
  51. Scheffer M., Szabó S., Gragnani A., van Nes E.H., Rinaldi S., Kautsky N., Norberg J., Roijackers R.M.M. and Franken R.J.M. 2003. Floating plant dominance as a stable state. PNAS 100: 4040–4045.Google Scholar
  52. Schriver P., Bogestrand J., Jeppesen E. and Sondergaard Ma. 1995. Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biol. 33: 255–270.Google Scholar
  53. Sculthorpe C.D. 1967. The Biology of Aquatic Vascular Plants. E. Arnold, London, UK.Google Scholar
  54. Sharma A., Gupta M.K. and Singhal P.K. 1996. Toxic effects of leachate of Water Hyacinth decay on the growth of Scenedesmus obliquus (Chlorophyta). Water Res. 10: 2281–2286.Google Scholar
  55. Søndergaard M. and Moss B. 1998. Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. In: Jeppesen E., Søndergaard Ma., Søndergaard Mo. and Christoffersen K. (eds), The structuring role of submerged macrophytes in lakes. Springer-Verlag, New York, NY, USA, pp. 115–132.Google Scholar
  56. ter Braak C.J.F. and Smilauer P. 1998. CANOCO reference manual and user’s guide to CANOCO for Windows. Centre for Biometry, Wageningen, The Netherlands.Google Scholar
  57. Timms R.M. and Moss B. 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol. Oceanogr. 29: 472–486.Google Scholar
  58. Underwood A.J. 1997. Experiments in Ecology. Cambridge University Press, Cambridge, UK.Google Scholar
  59. Valderrama J.C. 1981. The simultaneous analysis of total N and total P in natural waters. Mar. Chem. 10: 109–122.Google Scholar
  60. Venugopal M. and Winfield I.J. 1993. The distribution of juvenile fishes in a hypereutrophic pond: can macrophytes potentially offer a refuge for zooplankton? J. Freshwater Ecol. 8: 389–396.Google Scholar
  61. von Ende C. 1993. Repeated-measures analysis: growth and other time-dependent measures. In: Scheiner S. and Gurevitch J. (eds), Design and Analysis of Ecological Experiments. Chapman & Hall, New York, New York, USA, pp. 113–137.Google Scholar
  62. Yafe A., Loureiro M., Scasso F. and Quintans F. 2002. Feeding of two Cichlidae species (Perciformes) in a hypertrophic urban lake. Iheringia, Série Zoologia 92(4): 73–79.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Mariana Meerhoff
    • 1
  • Néstor Mazzeo
    • 1
  • Brian Moss
    • 2
  • Lorena Rodríguez-Gallego
    • 1
  1. 1.Sección Limnología, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  2. 2.School of Biological Sciences, Derby BuildingUniversity of LiverpoolLiverpoolUK

Personalised recommendations