Applied Composite Materials

, Volume 11, Issue 1, pp 17–31 | Cite as

Improvement of Mechanical Properties of Oligomer-modified Acrylic Bone Cement with Glass-fibers

  • Mervi A. Puska
  • Lippo V. Lassila
  • Timo O. Närhi
  • Antti U. O. Yli-Urpo
  • Pekka K. Vallittu
Article

Abstract

Some mechanical properties of oligomer-modified acrylic bone cement with glass-fibers were studied. Under wet environments, oligomer-filler forms a porous structure in the acrylic bone cement. Test specimens were manufactured using commercial bone cement (Palacos® R) with different quantities of an experimental oligomer-filler (0–20 wt%), and included continuous unidirectional E-glass fibers (l=65 mm) or chopped E-glass fibers (l=2 mm). The specimens were either tested dry, or after being immersed under wet environments for one week. The three-point bending test was used to measure the flexural strength and modulus of the acrylic bone cement composites (analysis with ANOVA). A scanning electron microscope (SEM) was used to examine the surface structure of the acrylic bone cement composites. Using continuous glass-fiber reinforcement, the dry flexural strength was 145 MPa and modulus was 4.6 GPa for the plain bone cement. For the test specimens with 20 wt% of oligomer-filler and continuous unidirectional glass-fibers, the dry flexural strength was 118 MPa and modulus was 4.2 GPa, whereas the wet flexural strength was 66 MPa and modulus was 3.0 GPa. The results suggest that the reduced flexural properties caused by the porosity of oligomer-modified bone cement can be compensated with glass-fiber reinforcement.

bone cement glass-fibers fiber reinforcement mechanical properties porosity PMMA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Charnley, J., 'Anchorage of Femoral Head Prosthesis to the Shaft of the Femur', The Journal of Bone and Joint Surgery 42-B, 1960, 28–30.Google Scholar
  2. 2.
    DiPisa, J. A., Sih, G. S. and Berman, A. T., 'The Temperature Problem at the Bone-Acrylic Cement Interface of the Total Hip Replacement', Clinical Orthopaedics and Related Research 121, 1976, 95–98.Google Scholar
  3. 3.
    Revell, P. A., Braden, M. and Freeman, M. A., 'Review of the Biological Response to a Novel Bone Cement Containing Poly(ethyl methacrylate) and n-butyl Methacrylate', Biomaterials 19, 1998, 1579–1586.Google Scholar
  4. 4.
    Lewis, G., 'Properties of Acrylic Bone Cement: State of the Art Review', Journal of Biomedical Materials Research 38, 1997, 155–182.Google Scholar
  5. 5.
    Ciapetti, G., Granchi, D., Cenni, E., Savarino, L., Cavedagna, D. and Pizzoferrato, A., 'Cytotoxic Effect of Bone Cements in HL-60 Cells: Distinction between Apoptosis and Necrosis', Journal of Biomedical Materials Research 52, 2000, 338–345.Google Scholar
  6. 6.
    Feith, R., 'Side Effect of Acrylic Cement Implanted into Bone Cement Were Studied', Acta Orthopaedica Scandinavica Supplementum 161, 1975, 1–36.Google Scholar
  7. 7.
    Gilbert, J. L., Hasenwinkel, J. M., Wixson, R. L. and Lautenschlager, E. P. J., 'A Theoretical and Experimental Analysis of Polymerization Shrinkage of Bone Cement: A Potential Major Source of Porosity', Journal of Biomedical Materials Research 52, 2000, 210–218.Google Scholar
  8. 8.
    Lewis, G., 'Relative Roles of Cement Molecular Weight and Mixing Method on the Fatigue Performance of Acrylic Bone Cement: Simplex P versus Osteopal', Journal of Biomedical Materials Research 53, 2000, 119–130.Google Scholar
  9. 9.
    Lewis, G., 'Effect of Mixing Method and Storage Temperature of Cement Constituents on the Fatigue and Porosity of Acrylic Bone Cement', Journal of Biomedical Materials Research 48, 1999, 143–149.Google Scholar
  10. 10.
    Lewis, G., Jeffry, S., Nyman, J. S. and Trieu, H. H., 'Effect of Mixing Method on Selected Properties of Acrylic Bone Cement', Journal of Biomedical Materials Research 38, 1997, 221–228.Google Scholar
  11. 11.
    Saha, S. and Pal, S., 'Improvement of mechanical properties of acrylic bone cement by fiber reinforcement', Journal of Biomechanics 17, 1984, 467–478.Google Scholar
  12. 12.
    Vallo, C. I., Montemartini, P. E., Fanovich, M. A., Porto-Lopez, J. M. and Cuadrado, T. R., 'Polymethylmethacrylate-based Bone Cement Modified with Hydroxyapatite', Journal of Biomedical Materials Research 48, 1999, 150–158.Google Scholar
  13. 13.
    Vila, M. M., Ginebra, M. P., Gil, F. J. and Planell, J. A., 'Effect of Porosity and Environment on the Mechanical Behavior of Acrylic Bone Cement Modified with Acrylonitrile-Butadiene30 Styrene Particles: Part I. Fracture Toughness', Journal of Biomedical Materials Research 48, 1999, 121–127.Google Scholar
  14. 14.
    Vila, M. M., Ginebra, M. P., Gil, F. J. and Planell, J. A., 'Effect of Porosity and Environment on the Mechanical Behavior of Acrylic Bone Cement Modified with Acrylonitrile-Butadiene-Styrene Particles: Part II. Fatigue Crack Propagation', Journal of Biomedical Materials Research 48, 1999, 128–134.Google Scholar
  15. 15.
    Beruto, D. T., Mezzasalma, S. A., Capurro, M., Botter, R. and Cirillo, P., 'Use of Alphatricalcium Phosphate (TCP) as Powders and as an Aqueous Dispersion to Modify Processing, Microstructure, and Mechanical Properties of Polymethylmethacrylate (PMMA) Bone Cements and to Produce Bone-Substitute Compounds', Journal of Biomedical Materials Research 49, 2000, 498–505.Google Scholar
  16. 16.
    Kawagoe, K., Saito, M., Shibuya, T., Nakashima, T., Hino, K. and Yoshikawa, H., 'Augmentation of Cancellous Screw Fixation with Hydroxyapatite Composite Resin (CAP) in Vivo', Journal of Biomedical Materials Research 53, 2000, 678–684.Google Scholar
  17. 17.
    Park, K. D. and Park, J. B., 'Interfacial Strength of Compression-Molded Specimens between PMMA Powder and PMMA/MMA Monomer Solution-Treated Ultra-High Molecular Weight Polyethylene (UHMWPE) Powder', Journal of Biomedical Materials Research 53, 2000, 737–747.Google Scholar
  18. 18.
    Shinzato, S., Kobayashi, M., Mousa, W. M., Kamimura, M., Neo, M., Choju K., Kokubo, T. and Nakamura T., 'Bioactive Bone Cement: Effect of Surface Curing Properties on Bone-Bonding Strength', Journal of Biomedical Materials Research 53, 2000, 51–61.Google Scholar
  19. 19.
    Shinzato, S., Kobayashi, M., Mousa, W. F., Kamimura, M., Neo, M., Kitamura, Y., Kokubo, T. and Nakamura T., 'Bioactive Polymethyl Methacrylate-Based Bone Cement: Comparison of Glass Beads, Apatite-and Wollastonite-Containing Glass-Ceramic, and Hydroxyapatite Fillers on Mechanical and Biological properties', Journal of Biomedical Materials Research 51, 2000, 258–272.Google Scholar
  20. 20.
    Fujita, H., Iida, H., Kawanabe, K., Okada, Y., Oka, M., Masuda, T., Kitamura, T. and Nakamura, T., 'Pressurization of Bioactive Bone Cement in Vitro', Journal of Biomedical Materials Research 48, 1999, 43–51.Google Scholar
  21. 21.
    Okada, Y., Kawanabe, K., Fujita, H., Nishio, K. and Nakamura, T., 'Repair of Segmental Bone Defects Using Bioactive Bone Cement: Comparison with PMMA Bone Cement', Journal of Biomedical Materials Research 47, 1999, 353–359.Google Scholar
  22. 22.
    Puska, M. A. and Hormi, O. E. O., 'Synthetic Aspects on the Polyesters of Trans-4-hydroxy-N-bezyl-L-proline and Trans-4-hydroxy-L-proline', Polymer Preprints 41, 2000, 1050–1051.Google Scholar
  23. 23.
    Puska M. A., Kokkari, A. K., Närhi, T. O. and Vallittu, P. K., 'Mechanical Properties of Oligomer Modified Acrylic Bone Cement', Biomaterials 24, 2003, 417–425.Google Scholar
  24. 24.
    Murphy, J., 'Physical Properties of Laminates: Strength Prediction', in Reinforced Plastics Handbook, 2nd edn, Elsevier, Oxford, 1998, pp. 264–265.Google Scholar
  25. 25.
    Vallittu, P. K., 'Flexural Properties of Acrylic Resin Polymers Reinforced with Unidirectional and Woven Glass Fibers', The Journal of Prosthetic Dentistry 81, 1999, 318–326.Google Scholar
  26. 26.
    Vallittu, P.K. and Sevelius, C., 'Resin-Bonded, Glass Fiber-Reinforced Composite Fixed Partial Dentures: A Clinical Study', The Journal of Prosthetic Dentistry 84, 2000, 413–418.Google Scholar
  27. 27.
    Vallittu, P. K., 'Curing of a Silane Coupling Agent and Its Effect on the Transverse Strength of Autopolymerizing Polymethylmethacrylate-Glass Fibre Composite', Journal of Oral Rehabilitation 24, 1997, 124–130.Google Scholar
  28. 28.
    Cho, S. B., Nakanishi, K., Kokubo, T. and Soga, N., 'Dependence of Apatite Formation on Silica Gel on Its Structure: Effect of Heat Treatment', Journal of the American Ceramic Society 78, 1995, 1769–1774.Google Scholar
  29. 29.
    ISO 1567:1999(E), 'Dentistry-Denture base polymers'. Geneva, Switzerland: International Organization for Standardization, 1999.Google Scholar
  30. 30.
    Coreño, J., Martínez, A., Bolarín, A. and Sánchez, F., 'Apatite Nucleation on Silica Surface: A ζ Potential Approach', Journal of Biomedical Materials Research 57, 2001, 119–125.Google Scholar
  31. 31.
    Vallittu, P. K., 'Strength and Interfacial Adhesion of FRC-Tooth System', in The Second International Symposium on Fibre-Reinforced Plastics in Dentistry, P. K. Vallittu (ed.), Nijmegen, The Netherlands, 2001, pp. 9–10.Google Scholar
  32. 32.
    Vallittu P. K., 'Experiences of the Use of Glass Fibers withMultiphase Acrylic Resin Systems', in Symposium Book of the European Prosthodontic Association (EPA) 22nd Annual Conference in Turku, P. K. Vallittu (ed.), Turku, Finland, 1998, pp. 4–6.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Mervi A. Puska
    • 1
  • Lippo V. Lassila
    • 1
  • Timo O. Närhi
    • 1
  • Antti U. O. Yli-Urpo
    • 1
  • Pekka K. Vallittu
    • 1
  1. 1.Department of Prosthetic Dentistry & Biomaterials Research, Institute of DentistryUniversity of Turku, TurkuTurkuFinland

Personalised recommendations