Acta Applicandae Mathematica

, Volume 80, Issue 2, pp 123–174 | Cite as

Pseudo-Differential Operators in Algebras of Generalized Functions and Global Hypoellipticity

  • Claudia Garetto


The aim of this work is to develop a global calculus for pseudo-differential operators acting on suitable algebras of generalized functions. In particular, a condition of global hypoellipticity of the symbols gives a result of regularity for the corresponding pseudo-differential equations. This calculus and this frame are proposed as tools for the study in Colombeau algebras of partial differential equations globally defined on R n .

Colombeau algebras pseudo-differential operators global hypoellipticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antonevich, A. B. and Radyno, Ya. V.: A general method for constructing algebras of generalized functions, Dokl. Akad. Nauk SSSR 318(2) (1991), 267–270 (Russian); translation in Soviet Math. Dokl. 43 (3) (1991), 680–684.Google Scholar
  2. 2.
    Beals, R.: A general calculus of pseudodifferential operators, Duke Math. J. 42 (1975), 1–42.Google Scholar
  3. 3.
    Biagioni, H. A.: A Nonlinear Theory of Generalized Function, Lecture Notes in Math. 1421, Springer, Berlin, 1990.Google Scholar
  4. 4.
    Boggiatto, P., Buzano, E. and Rodino, L.: Global Hypoellipticity and Spectral Theory, Akademie-Verlag, 92, Berlin, 1996.Google Scholar
  5. 5.
    Boggiatto, P. and Rodino, L.: Quantization and pseudo-differential operators, Cubo Mat. Educ. 5(1) (2003), 237–272.Google Scholar
  6. 6.
    Buzano, E.: Notes on oscillatory integrals, Manuscript, PhD course lectures notes, Univ. Torino, 1995.Google Scholar
  7. 7.
    Colombeau, J. F.: Elementary Introduction to New Generalized Functions, North-Holland, Amsterdam, 1985.Google Scholar
  8. 8.
    Colombeau, J. F.: Multiplication of Distributions, A Tool in Mathematics, Numerical Engineering and Theoretical Physics, Lecture Notes in Math. 1532, Springer-Verlag, Berlin, 1992.Google Scholar
  9. 9.
    Garetto, C., Gramchev, T. and Oberguggenberger, M.: Pseudodifferential operators with generalized symbols and regularity theory, Preprint, University of Innsbruck, 2003.Google Scholar
  10. 10.
    Grosser, M., Kunzinger, M., Oberguggenberger, M. and Steinbauer, R.: Geometric Theory of Generalized Functions with Applications to General Relativity, Math. Appl. 537, Kluwer Academic Publishers, Dordrecht, 2001.Google Scholar
  11. 11.
    Hörmann, G.: Integration and microlocal analysis in Colombeau algebras of generalized functions, J. Math. Anal. Appl. 239(2) (1999), 332–348.Google Scholar
  12. 12.
    Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis, Universitext, Springer-Verlag, New York, 2002.Google Scholar
  13. 13.
    Nedeljkov, M. and Pilipovi´c, S.: Hypoelliptic pseudodifferential operators in Colombeau's space, Bull. Cl. Sci. Math. Nat. Sci. Math. 23 (1998), 1–14.Google Scholar
  14. 14.
    Nedeljkov, M., Pilipovi´c, S. and Scarpalézos, D.: The Linear Theory of Colombeau Generalized Functions, Pitman Res. Notes in Math. 259, Longman Sci. Tech., Harlow, 1998.Google Scholar
  15. 15.
    Oberguggenberger, M.: Multiplication of Distributions and Applications to Partial Differential Equations, Pitman Res. Notes in Math. 259, Longman Sci. Tech., Essex, 1992.Google Scholar
  16. 16.
    Pilipovi´c, S.: Colombeau Generalized Functions and Pseudodifferential Operators, Lecture Notes Series, University of Tokyo, 1994.Google Scholar
  17. 17.
    Pilipovi´c, S.: Pseudo-differential operators and the microlocalization in the space of colombeau's generalized functions, Bull. Acad. Serbe Sci. Arts Cl. Sci. Math. Natur. 20 (1995), 13–27.Google Scholar
  18. 18.
    Radyno, Ya. V., Ngo, F. T. and Sabra, R.: The Fourier transformation in an algebra of new generalized functions, Dokl. Akad. Nauk 327(1) (1992), 20–24 (Russian); translation in Russian Acad. Sci. Dokl. Math. 46 (3) (1993), 414–417.Google Scholar
  19. 19.
    Rosinger, E. E.: Generalized Solutions of Nonlinear Partial Differential Equations, North-Holland Math. Stud. 146, Amsterdam, 1987.Google Scholar
  20. 20.
    Saint Raymond, X.: Elementary Introduction to the Theory of Pseudo-differential Operators, Studies in Advanced Mathematic, CRC Press, Boca Raton, FL, 1991.Google Scholar
  21. 21.
    Shubin, M. A.: Pseudodifferential Operators and Spectral Theory, Nauka, Moscow. English translation: Springer-Verlag, Berlin, 1987.Google Scholar
  22. 22.
    Wong, M. W.: An Introduction to Pseudo-Differential Operators, 2nd edn, World Scientific, River Edge, NJ, 1999.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Claudia Garetto

There are no affiliations available

Personalised recommendations