Advertisement

Applied Biochemistry and Microbiology

, Volume 40, Issue 4, pp 376–380 | Cite as

Effect of Iron Hydroxide on Phosphate Removal during Anaerobic Digestion of Activated Sludge

  • V. P. Stabnikov
  • S. T.-L. Tay
  • D.-Kh. Tay
  • V. N. Ivanov
Article

Abstract

The addition of iron (III) hydroxide during methanogenic digestion of activated sludge by anaerobic sludge displaying an iron-reducing activity resulted in a microbial reduction of iron (III) with the formation of iron (II), capable of precipitating phosphates. The feasibility of eliminating 66.6 to 99.6% of the dissolved phosphate at initial concentrations of 1000 to 3500 mg PO3-4/l by adding 6420 mg/l iron (III) hydroxide into a reactor for anaerobic fermentation of activated sludge was analyzed. The optimal ratio of iron (III) added to dissolved phosphate removed (mg) providing a 95% removal amounted to 2 : 1. These results may be used in new technology for anaerobic wastewater treatment with phosphate removal.

Keywords

Iron Phosphate Wastewater Fermentation Hydroxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Meganck, M.T.L. and Faup, G.M., Biotreatment Systems, Wise, D.L., Ed., Boca Raton: CRC, 1988, vol. 3, pp. 11-204.Google Scholar
  2. 2.
    Fytianos, K., Voudrias, E., and Raikos, N., Environ. Pollut., 1998, vol. 101, no. 1, pp. 123-130.Google Scholar
  3. 3.
    Maurer, M., Abramovich, D., Siegrist, H., and Gujer, W., Water Res., 1999, vol. 33, no. 2, pp. 484-493.Google Scholar
  4. 4.
    Lovley, D.R., Environmental Microbe-Metal Interactions, Lovley, D.R., Ed., Washington: ASM, pp. 3-30.Google Scholar
  5. 5.
    Fredrickson, J.K. and Gorby, Y.A., Curr. Opin. Biotech., 1996, vol. 7, no. 3, pp. 287-294.Google Scholar
  6. 6.
    Nielsen, P.H., Water Sci. Techn., 1996, vol. 34, no. 5/6, pp. 129-136.Google Scholar
  7. 7.
    Phelps, C.D. and Young, L.Y., Biodegradation, 1999, vol. 10, no. 1, pp. 15-25.Google Scholar
  8. 8.
    Rasmussen, H. and Nielson, P.H., Water Res., 1996, vol. 30, no. 3, pp. 551-558.Google Scholar
  9. 9.
    Nielsen, J.L., Juretschko, S., Wagner, M., and Nielsen, P.H., Appl. Environ. Microbiol., 2002, vol. 68, no. 9, pp. 4629-4636.Google Scholar
  10. 10.
    Ivanov, V.N., Stabnikova, E.V., Stabnikov, V.P., Kim, I.S., and Zuber, A., Prikl. Biokhim. Mikrobiol., 2002, vol. 38, no. 3, pp. 295-299.Google Scholar
  11. 11.
    Ivanov, V.N., Stabnikova, E.V., and Shirokikh, V.O., Mikrobiologiya, 1997, vol. 6, no. 3, pp. 402-407.Google Scholar
  12. 12.
    Stabnikova, O.V., Krasinko, V.O., Yamkovii, O.O., and Ivanov, V.M., Kharchova promislovist', 1998, vol. 43/44, pp. 154-159.Google Scholar
  13. 13.
    Stabnikova, E.V., Krasin'ko, V.O., and Ivanov, V.N., Khim. Tekhnol. Vody, 2000, vol. 22, no. 2, pp. 207-215.Google Scholar
  14. 14.
    Caccavo, F., Jr., Coates, J.D., Rossello-Mora, R.A., Ludwig, W., Schleifer, K.H., Lovley, D.R., and McInerney, M.J., Arch. Microbiol., 1996, vol. 165, no. 6, pp. 370-376.Google Scholar
  15. 15.
    Lovley, D.R. and Phillips, E.J.P., Appl. Environ. Microbiol., 1988, vol. 54, no. 6, pp. 1472-1480.Google Scholar
  16. 16.
    Standard Methods for the Examination of Water and Wastewater, Washington: Amer. Publ. Health Association, 1998.Google Scholar
  17. 17.
    Schwertmann, U. and Cornell, R.M., The Iron Oxides, New York: VCH, Publisher, 2003.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • V. P. Stabnikov
    • 1
  • S. T.-L. Tay
    • 2
  • D.-Kh. Tay
    • 2
  • V. N. Ivanov
    • 3
    • 4
  1. 1.Ukrainian State University of Food TechnologiesKievUkraine
  2. 2.Nanyang Technological UniversitySingapore
  3. 3.Ukrainian Branch of the International Center of Scientific CultureKievUkraine
  4. 4.Currently at Nanyang Technological UniversitySingapore

Personalised recommendations