Applied Biochemistry and Microbiology

, Volume 40, Issue 3, pp 241–248 | Cite as

Cloning and Expression of the Vitreoscilla Hemoglobin Gene in Enterobacter Aerogenes: Effect on Cell Growth and Oxygen Uptake

  • Sebnem O. Erenler
  • Salih Gencer
  • Hikmet Geckil
  • Benjamin C. Stark
  • Dale A. Webster


The hemoglobins found in unicellular organisms show a great deal of chemical reactivity, protecting cells against oxidative stress, and hence have been implicated in a wider variety of potential functions than those traditionally associated with animal and plant hemoglobins. There are well-documented studies showing that bacteria expressing Vitreoscilla hemoglobin (VHb), the first prokaryotic hemoglobin characterized, have better growth and oxygen uptake rates than their VHb counterparts. Here, the expression of VHb, its effect on the growth and antioxidant enzyme status of cells under different culture conditions was studied by cloning the complete regulatory and coding sequences (vgb) for VHb in Enterobacter aerogenes. Contrary to what has been reported for Escherichia coli, the expression of vgb in E.aerogenes decreased several fold under 10% of atmospheric oxygen (≈2% oxygen) and its growth was not greatly improved by the presence of VHb. Measured either as viable cells or total cell mass, untransformed E. aerogenes grew better than the recombinant strains. At the late exponential phase, however, the vgb-bearing strain was determined to have a higher cell number and total cell mass than the strain bearing only the plasmid vector with no vgb insert. The VHb expressing strain also had an oxygen uptake rate several fold higher than its counterparts. Given that oxidative stress may occur upon elevated oxygen exposure and be balanced by the action of antioxi-dative compounds, the level of antioxidative response of E. aerogenes expressing VHb was also studied. The VHb expressing strain had substantially (1.5–2.6-fold) higher catalase activity than strains not expressing VHb. Both VHb+ and VHb- strains, however, showed similar levels of superoxide dismutase activity. The activity of both enzymes was also growth phase dependent. Stationary phase cells of all strains showed 2–5-fold higher activity for these enzymes than cells at the exponential phase.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hardison, R., J. Exp. Biol., 1998, vol. 201, pp. 1099–1117.Google Scholar
  2. 2.
    Wakabayashi, S., Matsubara, H., and Webster, D.A., Nature, 1986, vol. 322, pp. 481–483.Google Scholar
  3. 3.
    Dikshit, K.L. and Webster, D.A., Gene, 1988, vol. 70, pp. 377–386.Google Scholar
  4. 4.
    Khosravi, M., Webster, D.A., and Stark, B.C., Plasmid, 1990, vol. 24, pp. 190–194.Google Scholar
  5. 5.
    Kallio, P.T. and Bailey, J.E., Biotechnol. Prog., 1996, vol. 12, pp. 31–39.Google Scholar
  6. 6.
    Wei, M.L., Webster, D.A., and Stark, B.C., Biotechnol. Bioeng., 1998, vol. 57, pp. 477–483.Google Scholar
  7. 7.
    Bollinger, C.J., Bailey, J.E., and Kallio, P.T., Biotechnol. Prog., 2001, vol. 17, pp. 798–808.Google Scholar
  8. 8.
    Geckil, H., Stark, B.C., and Webster, D.A., J. Biotechnol., 2001, vol. 85, pp. 57–66.Google Scholar
  9. 9.
    Boerman, R.L. and Webster, D.A., J. Gen. Appl. Microbiol., 1982, vol. 28, pp. 35–43.Google Scholar
  10. 10.
    DeModena, J.A., Gutierrez, S., Velasco, J., Fernandez, F.J., Fachini, R.A., Galazzo, J.L., Hughes, D.E., and Martin, J.F., Biotechnol. (N.Y.), 1993, vol. 11, pp. 926–929.Google Scholar
  11. 11.
    Chen, W., Hughes, D.E., and Bailey, J.E., Biotechnol. Prog., 1994, vol. 10, pp. 308–313.Google Scholar
  12. 12.
    Brunker, P., Minas, W., Kallio, P.T., and Bailey, J.E., Microbiol. (UK), 1998, vol. 144, pp. 2441–2448.Google Scholar
  13. 13.
    Bulow, L., Holmberg, N., Lilius, G., and Bailey, J.E., Trends Biotechnol., 1999, vol. 17, pp. 21–24.Google Scholar
  14. 14.
    Pendse, G.J. and Bailey, J.E., Biotechnol. Bioeng., 1994, vol. 44, pp. 1367–1370.Google Scholar
  15. 15.
    Bailey, J.E., Sburlati, A., Hatzimanikatis, V., Lee, K., Renner, W.A., and Tsai, P.S., Biotechnol. Bioeng., 1996, vol. 52, pp. 109–121.Google Scholar
  16. 16.
    Nasr, M.A., Hwang, K.W., Akbas, M., Webster, D.A., and Stark, B.C., Biotechnol. Prog., 2001, vol. 17, pp. 359–361.Google Scholar
  17. 17.
    Patel, S.M., Stark, B.C., Hwang, K.W., Dikshit, K.L., and Webster, D.A., Biotechnol. Prog., 2000, vol. 16, pp. 26–30.Google Scholar
  18. 18.
    Liu, S.-C., Webster, D.A., Wei, M.-L., and Stark, B.C., Biotechnol. Bioeng., 1996, vol. 49, pp. 101–105.Google Scholar
  19. 19.
    Khosla, C. and Bailey, J.E., Mol. Gen. Genet., 1988, vol. 214, pp. 158–161.Google Scholar
  20. 20.
    Dikshit, K.L. and Webster, D.A., Gene, 1988, vol. 70, pp. 377–386.Google Scholar
  21. 21.
    Khosravi, M., Ryan, W., Webster, D.A., and Stark, B.C., Plasmid, 1990, vol. 23, pp. 138–143.Google Scholar
  22. 22.
    Kallio, P.T., Kim, D.J., Tsai, P.S., and Bailey, J.E., Eur. J. Biochem., 1994, vol. 219, pp. 201–208.Google Scholar
  23. 23.
    Calik, G., Vural, H., and Ozdamar, T.H., Chem. Eng. J., 1997, vol. 65, pp. 109–116.Google Scholar
  24. 24.
    Calik, P., Calik, G., and Ozdamar, T.H., Enzyme Microb. Tech., 1998, vol. 23, pp. 451–461.Google Scholar
  25. 25.
    Elibol, M. and Mavituna, F., Biochem. Eng. J., 1999, vol. 3, pp. 1–7.Google Scholar
  26. 26.
    Elibol, M. and Ozer, D., Process Biochem., 2000, vol. 36, pp. 325–329.Google Scholar
  27. 27.
    Zeng, A.-P., Biebl, H., and Deckwer, W.-D., Appl. Microbiol. Biotechnol., 1990, vol. 33, pp. 264–268.Google Scholar
  28. 28.
    McCormick, M.L., Buettner, G.R., and Britigan, B.E., J. Bacteriol., 1998, vol. 180, pp. 622–625.Google Scholar
  29. 29.
    Miller, J.H., Experiments in Molecular Genetics, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1972.Google Scholar
  30. 30.
    Messing, J., Methods Enzymol., 1983, vol. 101, pp. 20–78.Google Scholar
  31. 31.
    Cohen, S.N., Chang, A.C.Y., and Hsu, L., Proc. Natl. Acad. Sci. USA, 1972, vol. 69, pp. 2110–2114.Google Scholar
  32. 32.
    Geckil, H., Effect of Bacterial Hemoglobin on Microorganisms and Its Use for the Optimization of Acetoin and Butanediol by Enterobacter aerogenes, PhD Thesis, Chicago: Illinois Institute of Technology, 1995.Google Scholar
  33. 33.
    Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K., Current Protocols in Molecular Biology, New York: Greene Publishing and Wiley-Interscience, 1992.Google Scholar
  34. 34.
    Aebi, H., Methods Enzymol., 1984, vol. 105, pp. 121–126.Google Scholar
  35. 35.
    McCord, J.M. and Fridovich, I., Biol. Chem., 1969, vol. 244, pp. 6049–6055.Google Scholar
  36. 36.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., J. Biol. Chem., 1951, vol. 193, pp. 265–275.Google Scholar
  37. 37.
    Khosla, C. and Bailey, J.E., J. Bacteriol., 1989, vol. 171, pp. 5995–6004.Google Scholar
  38. 38.
    Joshi, M. and Dikshit, K.L., Biochem. Biophys. Res. Commun., 1994, vol. 202, pp. 535–542.Google Scholar
  39. 39.
    Spiro, S. and Guest, J.R., FEMS Microbiol. Rev., 1990, vol. 75, pp. 399–428.Google Scholar
  40. 40.
    Iuchi, S. and Lin, E.C.C., Cell, 1991, vol. 66, pp. 5–7.Google Scholar
  41. 41.
    Magnolo, S.K., Leenutaphong, D.L., DeModena, J.A., Curtis, J.E., Bailey, J.E., Galazzo, J.L., and Hughes, D.E., Biotechnol. (N.Y.), 1991, vol. 9, pp. 473–476.Google Scholar
  42. 42.
    Tsai, P.S., Hatzimanikatis, V., and Bailey, J.E., Biotechnol. Bioeng., 1996, vol. 49, pp. 139–150.Google Scholar
  43. 43.
    Frey, A.D., Farres, J., Bollinger, C.J.T., and Kallio, P.T., Appl. Environ. Microbiol., 2002, vol. 68, pp. 4835–4840.Google Scholar
  44. 44.
    Ramandeep, Hwang, K.W., Raje, M., Kim, K.J., Stark, B.C., Dikshit, K.L., and Webster, D.A., J. Biol. Chem., 2001, vol. 276, pp. 24781–24789.Google Scholar
  45. 45.
    Geckil, H., Gencer, S., Kahraman, H., and Erenler, S.O., Res. Microbiol., 2003, vol. 154, pp. 425–431.Google Scholar
  46. 46.
    Unden, G., Becker, S., Bongaerts, J., Holighaus, G., Schirawski, J., and Six, S., Arch. Microbiol., 1995, vol. 164, pp. 81–90.Google Scholar
  47. 47.
    Lee, H.-S., Lee, Y.-S., Kim, H.-S., Choi, J.-Y., Hassan, H.M., and Chung, M.-H., Free Radical Biol. Med., 1998, vol. 24, pp. 1193–1201.Google Scholar
  48. 48.
    Demple, B., Annu. Rev. Genet., 1991, vol. 25, pp. 315–337.Google Scholar
  49. 49.
    Izawa, S., Inoue, Y., and Kimura, A., Biochem. J., 1996, vol. 320, pp. 61–67.Google Scholar
  50. 50.
    Lin, E.C.C. and Lynch, A.S., Regulation of Gene Expression in Escherichia coli, (Lin, E.C.C. and Lynch, A.S., Eds.), Austin, Texas: RG Landes, 1996, pp. 361–373.Google Scholar
  51. 51.
    Skoneczny, M. and Rytka, J., Biochem. J., 2000, vol. 350, pp. 313–319.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • Sebnem O. Erenler
    • 1
  • Salih Gencer
    • 1
  • Hikmet Geckil
    • 1
  • Benjamin C. Stark
    • 2
  • Dale A. Webster
    • 2
  1. 1.Department of BiologyInonu UniversityMalatyaTurkey
  2. 2.Biology Division, Department of Biological, Chemical, and Physical SciencesIllinois Institute of TechnologyChicagoUSA

Personalised recommendations