General Relativity and Gravitation

, Volume 30, Issue 12, pp 1717–1728 | Cite as

Mass for the Graviton

  • Matt Visser


Can we give the graviton a mass? Does it even make sense to speak of a massive graviton? In this essay I shall answer these questions in the affirmative. I shall outline an alternative to Einstein Gravity that satisfies the Equivalence Principle and automatically passes all classical weakfield tests (GM/r ≈ 10-6). It also passes medium-field tests (GM/r ≈ 1/5), but exhibits radically different strong-field behaviour (GM/r ≈ 1). Black holes in the usual sense do not exist in this theory, and large-scale cosmology is divorced from the distribution of matter. To do all this we have to sacrifice something: the theory exhibits prior geometry, and depends on a non-dynamical background metric.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation (W. H. Freeman, San Francisco).Google Scholar
  2. 2.
    Van Dam, H., and Veltman, M. (1970). Nucl. Phys. B 22, 397.Google Scholar
  3. 3.
    Van Dam, H., and Veltman, M. (1972). Gen. Rel. Grav. 3, 215.Google Scholar
  4. 4.
    Ford, L., and Van Dam, H. (1980). Nucl. Phys. B 169, 126.Google Scholar
  5. 5.
    Boulware, D., and Deser, S. (1972). Phys. Rev. D 6, 3368.Google Scholar
  6. 6.
    Visser, M. (1998). In preparation.Google Scholar
  7. 7.
    Particle Data Group (1996). Review of Particle Properties, Phys. Rev. D 54, 1; see especially p. 207.Google Scholar
  8. 8.
    Goldhaber, A. S., and Nieto, M. M. (1974). Phys. Rev. D 9, 1119.Google Scholar
  9. 9.
    Hare, M. G. (1973). Can. J. Phys. 51, 431.Google Scholar
  10. 10.
    Will, C. M. (1997). “Bounding the mass of the graviton using gravitational wave observations of inspiralling compact binaries,” gr-qc/9709011.Google Scholar
  11. 11.
    Taylor, J. H., Wolszczan, A., Damour, T., and Weisberg, J. M. (1992). Science 355, 132.Google Scholar
  12. 12.
    Damour, T., and Taylor, J. H. (1991). Astrophys. J. 366, 501.Google Scholar
  13. 13.
    Thorne, K. S., Price, R. H., and Macdonald, D. A. (1986). Black Holes: the Membrane Paradigm (Yale, New Haven).Google Scholar
  14. 14.
    Peebles, P. J. E. (1993). Principles of Physical Cosmology (Princeton University Press, Princeton).Google Scholar
  15. 15.
    Logunov, A. A. and Mestvirishvili, M. A. (1986). Theor. Math. Phys. 65, 971.Google Scholar
  16. 16.
    Logunov, A. A., Mestvirishvili, M. A., and Chugreev, Yu. V. (1988). Theor. Math. Phys. 74, 1.Google Scholar
  17. 17.
    Vlasov, A. A., and Logunov, A. A. (1989). Theor. Math. Phys. 78, 229.Google Scholar
  18. 18.
    Logunov, A. A. (1992). Theor. Math. Phys. 92, 826.Google Scholar
  19. 19.
    Logunov, A. A. (1992). Theor. Math. Phys. 92, 826.Google Scholar
  20. 20.
    Gershtein, S. S., Logunov, A. A., and Mestvirishvili, M. A. (1997). “The upper limit on the graviton mass,” hep-th/9711147.Google Scholar
  21. 21.
    Loskutov, Yu. M. (1991). Theor. Math. Phys. 89, 1119.Google Scholar
  22. 22.
    Loskutov, Yu. M. (1991). Mod. Phys. Lett. A 6, 3473.Google Scholar
  23. 23.
    Kostalecky, V. A., and Samuel, S. (1989). Phys. Rev. Lett. 66, 343.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Matt Visser

There are no affiliations available

Personalised recommendations