Plant Ecology

, Volume 151, Issue 1, pp 85–100 | Cite as

The evolution of vegetative desiccation tolerance in land plants

  • Melvin J. Oliver
  • Zoltán Tuba
  • Brent D. Mishler


Vegetative desiccation tolerance is a widespread but uncommon occurrence in the plant kingdom generally. The majority of vegetative desiccation-tolerant plants are found in the less complex clades that constitute the algae, lichens and bryophytes. However, within the larger and more complex groups of vascular land plants there are some 60 to 70 species of ferns and fern allies, and approximately 60 species of angiosperms that exhibit some degree of vegetative desiccation tolerance. In this report we analyze the evidence for the differing mechanisms of desiccation tolerance in different plants, including differences in cellular protection and cellular repair, and couple this evidence with a phylogenetic framework to generate a working hypothesis as to the evolution of desiccation tolerance in land plants. We hypothesize that the initial evolution of vegetative desiccation tolerance was a crucial step in the colonization of the land by primitive plants from an origin in fresh water. The primitive mechanism of tolerance probably involved constitutive cellular protection coupled with active cellular repair, similar to that described for modern-day desiccation-tolerant bryophytes. As plant species evolved, vegetative desiccation tolerance was lost as increased growth rates, structural and morphological complexity, and mechanisms that conserve water within the plant and maintain efficient carbon fixation were selected for. Genes that had evolved for cellular protection and repair were, in all likelihood, recruited for different but related processes such as response to water stress and the desiccation tolerance of reproductive propagules. We thus hypothesize that the mechanism of desiccation tolerance exhibited in seeds, a developmentally induced cellular protection system, evolved from the primitive form of vegetative desiccation tolerance. Once established in seeds, this system became available for induction in vegetative tissues by environmental cues related to drying. The more recent, modified vegetative desiccation tolerance mechanism in angiosperms evolved from that programmed into seed development as species spread into very arid environments. Most recently, certain desiccation-tolerant monocots evolved the strategy of poikilochlorophylly to survive and compete in marginal habitats with variability in water availability.


Land Plant Vegetative Tissue Desiccation Tolerance Primitive Form Cellular Protection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aalen, R. B., Opsahl-Ferstad, H. G., Linnestad, C. & Olsen, O. A. 1994. Transcripts encoding an oleosin and a dormancy-related protein are present in both the aleurone layer and in the embryo of developing barley (Hordeum vulgare L.). Plant J. 5: 385–396.Google Scholar
  2. Amuti, K. S. & Pollard, C. J. 1977. Soluble carbohydrates of dry and developing seeds. Phytochemistry 16: 529–532.Google Scholar
  3. Baker, J., Steele, C. & Dure, L. III. 1988. Sequence and characterization of 6 LEA proteins and their genes from cotton. Planta 175: 485–492.Google Scholar
  4. Bartels, D., Alexander, R., Schneider, K., Elster, R., Velasco, R., Alamillo, J., Bianchi, G., Nelson, D. & Salamini, F. 1993. Desiccation-related gene products analyzed in a resurrection plant and in barley embryos. Pp. 119–127. In: Close, T. J. & Bray, E. A. (eds), Plant responses to cellular dehydration during environmental stress. Current Topics in Plant Physiology. American Society of Plant Physiologists. Series, Vol. 10, Rockville MarylandGoogle Scholar
  5. Bartels, D., Hanke, C., Schneider, K., Michel, D. & Salamini, F. 1992. A desiccation-related Elip-like gene from the resurrection plant Craterostigma plantagineum is regulated by light and ABA. EMBO J. 11: 2771–2778.Google Scholar
  6. Bartels, D., Schneider, K., Terstappen, G., Piatkowski, D. & Salamini, F. 1990. Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181: 27–34.Google Scholar
  7. Bartels, D., Singh, M. & Salamini, F. 1988. Onset of desiccation tolerance during development of the barley embryo. Planta 175: 485–492.Google Scholar
  8. Barthlott, W., Gröger, A. & Porembski, S. 1993. Some remarks on the vegetation of tropical inselbergs, diversity and ecological differentiation. Biogeographia 69: 105–124.Google Scholar
  9. Beckett, R. P. 1995 Some aspects of the water relations of lichens from habitats of contrasting water status studied using thermocouple psychrometry. Ann. Bot. 76: 211–217.Google Scholar
  10. Bewley, J. D. 1979. Physiological aspects of desiccation tolerance. Ann. Rev. Plant Physiol. 30: 195–238.Google Scholar
  11. Bewley, J. D., Halmer, P., Krochko, J. E. & Winner, W. E. 1978. Metabolism of a drought-tolerant and a drought-sensitive moss: respiration, ATP synthesis and carbohydrate status. Pp. 185–203. In: Crowe, J. H. & Clegg, J. S. (eds), Dry biological systems. Academic Press, New York.Google Scholar
  12. Bewley, J. D. & Krochko, J. E. 1982. Desiccation tolerance. Pp. 325–378. In: Lange, O. L., Nobel, P. S., Osmond, C. B., & Ziegler, H. (eds), Encyclopedia of plant physiology. Vol 12B, Physiological Ecology II. Springer-Verlag, Berlin.Google Scholar
  13. Bewley, J. D. & Oliver, M. J. 1992. Desiccation tolerance in vegetative plant tissues and seeds: Protein synthesis in relation to desiccation and a potential role for protection and repair mechanisms. Pp. 141–160. In: Osmond, C. B. & Somero, G. (eds), Water and life: A comparative analysis of water relationships at the organismic, cellular and molecular levels. Springer-Verlag, Berlin.Google Scholar
  14. Bewley, J. D., Reynolds, T. L. & Oliver, M. J. 1993. Evolving strategies in the adaptation to desiccation. Pp. 193–201. In: Close, T. J. & Bray, E. A. (eds), Plant responses to cellular dehydration during environmental stress. Current Topics in Plant Physiology. American Society of Plant Physiologists. Series, Vol. 10, Rockville, Maryland.Google Scholar
  15. Bianchi, G., Gamba, A., Limiroli, R., Pozzi, N., Elster, R., Salamini, F. & Bartels, D. 1993. The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Physiol. Plant 87: 223–226.Google Scholar
  16. Bianchi, G., Gamba, A., Murelli, C., Salamini, F. & Bartels, D. 1992. Low molecular weight solutes in desiccated and ABAtreated calli of Craterostigma plantagineum. Phytochemistry 31: 1917–1922.Google Scholar
  17. Bianchi, G., Gamba, A., Murelli, C., Salamini, F. & Bartels, D. 1991a. Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. Plant J. 1: 355–359.Google Scholar
  18. Bianchi, G., Murelli, C., Bochicchio, A. & Vazzana, C. 1991b. Changes in low-molecular weight substances in Boea hygroscopica in response to desiccation and rehydration. Phytochemistry 30: 461–466.Google Scholar
  19. Blackman, S. A., Obendorf, R. L. & Leopold, A. C. 1992. Maturation proteins and sugars in desiccation tolerance of developing soybean seeds. J. Plant Physiol. 100: 225–230.Google Scholar
  20. Blomstedt, C. K., Neale, A. D., Gianello, R. D., Hamill, J. D. & Gaff, D. F. 1998. Isolation and characterization of cDNAs associated with the onset of desiccation tolerance in the resurrection grass, Sporobolus stapfianus. Plant Growth Reg. 24: 219–228.Google Scholar
  21. Bochicchio, A., Vazzana, C., Velasco, R., Singh, M. & Bartels, D. 1991. Exogenous ABA induces desiccation tolerance and leads to the synthesis of specific gene transcripts in immature embryos of maize. Maydica 36: 11–16.Google Scholar
  22. Bockel, C., Salamini, F. & Bartels, D. 1998. Isolation and characterization of genes expressed during early events of the dehydration process in the resurrection plant Craterostigma plantagineum. J. Plant Physiol. 152: 158–166.Google Scholar
  23. Bopp, M. & Werner, O. 1993. Abscisic acid and desiccation tolerance in mosses. Bot. Acta 106: 103–106.Google Scholar
  24. Bray, E. A. 1993. Molecular responses to water deficit. J. Plant Physiol. 103: 1035–1040.Google Scholar
  25. Burke, M. J. 1986. The glassy state and survival of anhydrous biological systems. Pp. 358–363. In: Leopold, A. C. (ed), Membranes, metabolism and dry organisms. Cornell University Press, Ithaca, New York.Google Scholar
  26. Chandler, P. M., Munns, R. & Robertson, M. 1993. Regulation of dehydrin expression. Pp. 159–166. In: Close, T. J. & Bray, E. A. (eds), Plant responses to cellular dehydration during environmental stress. Current topics in plant physiology. American Society of Plant Physiologists. Series, Vol. 10, Rockville, Maryland.Google Scholar
  27. Chase, M. W., Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H., Mishler, B. D., Duvall, M. R., Price, R. A., Hills, H. G., Qiu, Y., Kron, K. A., Rettig, J. H., Conti, E., Palmer, J. D., Manhart, J. R., Sytsma, K. J., Michaels, H. J., Kress, W. J., Karol, K. G., Clark, W. D., Hedrén, M., Gaut, B. S., Jansen, R. K. Kim, K., Wimpee, C. F., Smith, J. F., Furnier, G. R., Strauss, S. H., Xiang, Q., Plunkett, G. M., Soltis, P. S., Swensen, S. M., Williams, S. E., Gadek, P. A., Quinn, C. J., Eguiarte, L. E., Golenberg, E., Learn, J. G. H., Graham, S. W., Barrett, S. C. H., Dayanandan S. & Albert, V. A. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann. Missouri Bot. Gard. 80: 528–580.Google Scholar
  28. Chen, Y. & Burris, J. S. 1990. Role of carbohydrates in desiccation tolerance and membrane behavior in maturing maize seed. Crop Sci. 30: 971–975.Google Scholar
  29. Close, T. J., Fenton, R. D., Yang, A., Asghar, R., DeMason, D. A., Crone, D. E., Meyer, N. C. & Moonan, F. 1993. Dehydrin: The protein. Pp. 104–118. In: Close, T. J. & Bray, E. A. (eds), Plant responses to cellular dehydration during environmental stress. Current Topics in Plant Physiology. American Society of Plant Physiologists. Series, Vol. 10, Rockville, Maryland.Google Scholar
  30. Close, T. J., Kortt, A. A. & Chandler, P. M. 1989. A cDNAbased comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol. Biol. 13: 95–108.Google Scholar
  31. Crane, P. R. 1990. The phylogenetic context of microsporogenesis. Pp. 11–41 In: Blackmore, S. & Knox, R. B. (eds), Microspores: evolution and ontogeny. Academic Press, London.Google Scholar
  32. Crowe, J. H., Crowe, L. M., Carpenter, J. F., Rudolph, A. S., Aurell-Winstrom, C., Spargo, B. J. & Anchordoguy, T. J. 1988. Interactions of sugars and membranes. Biochim. Biophys. Acta 947: 367–384.Google Scholar
  33. Crowe, J. H., Hoekstra, F. A. & Crowe, L. M. 1992. Anhydrobiosis. Ann. Rev. Physiol. 54: 579–599.Google Scholar
  34. Csintalan, Zs., Takács, Z., Proctor, M. C. F., Lichtenthaler, H. K. & Tuba, Z. 1998. Desiccation and rehydration responses of desiccation tolerant moss and lichen species from a temperate semidesert grassland. J. Hatt. Bot. Lab. 84: 71–80.Google Scholar
  35. Donoghue, M. J. 1994. Progress and prospects in reconstructing plant phylogeny. Ann. Missouri Bot. Garden 81: 405–418.Google Scholar
  36. Drennan, P. M., Smith, M. T., Goldsworthy, D. & van Staden, J. 1993. The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw. J. Plant Physiol. 142: 493–496.Google Scholar
  37. Dure, L. III. 1993. A repeating 11-mer amino acid motif and plant desiccation. Plant J. 3: 363–369.Google Scholar
  38. Dure, L. III, Crouch, M., Harada, J., Ho, T-H. D., Mundy, J., Quatrano, R., Thomas, T. & Sung, Z. R. 1989. Common amino sequence domains among LEA proteins of higher plants. Plant Mol. Biol. 12: 475–486.Google Scholar
  39. Frank, W., Phillips, J., Salamini, F. & Bartels, D. 1998. Two dehydration-inducible transcripts from the resurrection plant Craterostigma plantagineum encode interacting homeodomainleucine zipper proteins. The Plant J. 15: 413–421.Google Scholar
  40. Furini, A., Koncz, C., Salamini, F. & Bartels, D. 1997. High level transcription of a member of a repeated gene family con98 fers dehydration tolerance to callus tissue of Craterostigma plantagineum. EMBO J. 16: 3599–3608.Google Scholar
  41. Gaff, D. F. 1977. Desiccation-tolerant vascular plants of Southern Africa. Oecologia 31: 95–109.Google Scholar
  42. Gaff, D. 1989. Responses of desiccation-tolerant 'resurrection' plants to water stress. Pp. 255–268. In: Krebb, K. H., Richter, H., Hinkley, T. M. (eds), Structural and functional responses to environmental stresses. SPB Academic Publishers, The Hague, The Netherlands.Google Scholar
  43. Gaff, D. & Ellis, R.P. 1974. South African grasses with foliage that revives after dehydration. Bothalia 11: 305–308.Google Scholar
  44. Gaff, D. & Loveys, B. R. 1994. Abscisic acid levels in drying plants of a resurrection grass. Trans. Malaysian Soc. Plant Physiol. 3: 286–287.Google Scholar
  45. Gaff, D., Bartels, S-Y. & O'Brien, T. P. 1976 The fine structure of dehydrated and reviving leaves of Borya nitida Labill. A desiccation-tolerant plant. Aust. J. Bot. 24: 225–236Google Scholar
  46. Gaff, D., Zee, D., Gaff, J. & Schneider, K. 1993 Gene expression at low RWC in two hardy tropical grasses. Trans. Malaysian Soc. Plant Physiol. 3: 238–240.Google Scholar
  47. Galau, G. A. & Hughes, D. W. 1987. Coordinate accumulation of homologous transcripts of seven cotton lea gene families during embryogenesis and germination. Devel. Biol. 123: 213–221.Google Scholar
  48. Galau, G. A., Bijaisoradat, N. & Hughes, D.W. 1987. Accumulation kinetics of cotton late embryogenesis-abundant mRNAs: coordinate regulation during embryogenesis and the role of abscisic acid. Devel. Biol. 123: 198–212.Google Scholar
  49. Galau, G. A., Jakobsen, K. S. & Hughes, D. W. 1991. The controls of late dicot embryogenesis and early germination. Plant Physiol. 81: 280–288.Google Scholar
  50. Goldmark, P. J., Curry, J., Morris, C. F. & Walker-Simmons, M. K. 1992. Cloning and expression of an embryo-specific mRNA upregulated in hydrated dormant seeds. Plant Mol. Biol. 19: 433–441.Google Scholar
  51. Hallam, N. D. & Luff, S. E. 1980. Fine structural changes in the mesophyll tissue of the leaves of Xerophyta villosa during desiccation. Bot. Gaz. 141: 173–179.Google Scholar
  52. Hambler, D. J. 1961. A poikilohydrous, poikilochlorophyllous angiosperm from Africa. Nature 191: 1415–1416.Google Scholar
  53. Harlan, H. V. & Pope, M. N. 1992. The germination of barley seeds harvested at different stages of growth. J. Heredity 13: 72–75.Google Scholar
  54. Haslekas, C., Stacy, R. A. P., Nygaard, V., CulianezMacia, F. A. & Aalen, R. B. 1998. The expression of a peroxiredoxin antioxidant gene, AtPer1, in Arabidopsis thaliana is seed specific and related to dormancy. Plant Mol. Biol. 36: 833–845.Google Scholar
  55. Hetherington, S. E. & Smillie, R. M. 1982 Humidity-sensitive degreening and regreening of leaves of Borya nitida Labill. as followed by changes in chlorophyll fluorescence. Aust. J. Plant Physiol. 9: 587–599.Google Scholar
  56. Ibisch, P. L., Rauer, G., Rudolph, D. & Barthlott, W. 1995. Floristic, biogeographical, and vegetational aspects of Pre-Cambrian rock outcrops (inselbergs) in eastern Bolivia. Flora 190: 299–314.Google Scholar
  57. Ingram, J. & Bartels, D. 1996. The molecular basis of dehydration tolerance in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 47: 377–403.Google Scholar
  58. Ishitani, M, Xiong, l, Stevenson, B. & Zhu, J. K. 1997. Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic aciddependent and abscisic acid-independent pathways. Plant Cell 9: 1935–49.Google Scholar
  59. Janick, J., Kim, Y. H., Kitto, S. & Saranga, Y. 1993. Desiccated synthetic seed. Pp. 11–23. In: Redenbaugh, K. (ed.), Synseeds: Application of synthetic seeds to crop improvement. CRC Press, Boca Raton, Florida.Google Scholar
  60. Judd, W. S., Campbell, C. S., Kellogg, E. A. & Stevens, P. F. 1999. Plant sytematics: a phylogenetic approach. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  61. Kaiser, K., Gaff, D. & Outlaw, W. J., Jr. 1985. Sugar contents of leaves of desiccation sensitive and desiccation-tolerant plants. Naturwissenschaften 72: 608–609.Google Scholar
  62. Kenrick, P. & Crane, P. R. 1997. The origin and early diversification of land plants: A cladistic study. Smithsonian Institution Press, Washington, D.C.Google Scholar
  63. Kermode, A. R. & Bewley, J. D. 1985. The role of maturation drying in the transition from seed development to germination. I. Acquisition of desiccation tolerance and germinability during development of Ricinus communis L. seeds. J. Exp. Bot. 36: 1906–1915.Google Scholar
  64. Knight, C. D., Sehgal, A., Atwal, K., Wallace, J. C., Cove, D. J., Coates, D., Quatrano, R. S., Bahadur, S., Stockley, P. G. & Cuming, A. C. 1995. Molecular responses to abscisic acid and stress are conserved between moss and cereals. Plant Cell 7: 499–506.Google Scholar
  65. Koster, K. L. & Leopold, A. C. 1988. Sugars and desiccation tolerance in seeds. J. Plant Physiol. 88: 829–832.Google Scholar
  66. Kuang, J., Gaff, D. F., Gianello, R. D., Blomstedt, C. K., Neale, A. D. & Hamill, J. D. 1995. Changes in in vivo protein complements in drying leaves of the desiccation-tolerant grass Sporobolus stapfianus and the desiccation-sensitive grass Sporobolus pyramidalis. Aust. J. Plant Physiol. 22: 1027–1034.Google Scholar
  67. Lane, B. G. 1991 Cellular desiccation and hydration: developmentally regulated proteins, and the maturation and germination of seed embryos. FASEB J. 5: 2893–2901Google Scholar
  68. Lange, O. L., Schulze, E-D. & Koch, W. 1970. Experimentellökologische Untersuchungen an Flechten der Negev-Wüste. II. CO2-Gaswechsel und Wasserhaushalt von Krusten-und Blattflechten am natürlichen Standort während der sommerlichen Trockenperiode. Flora 159: 539–572.Google Scholar
  69. Leopold, A. C., Bruni, F. & Williams, R. J. 1992. Water in dry organisms. Pp. 161–169. In: Somero, G. N., Osmond, C. B. & Bolis, C. L. (eds), Water and life. Comparative analysis of water relationships at the organismic, cellular and molecular levels. Springer-Verlag, Berlin.Google Scholar
  70. LePrince, O., Bronchart, R. & Deltour, R. 1990. Changes in starch and soluble sugars in relation to acquisition of desiccation tolerance during maturation of Brassica campestris seed. Plant Cell Environ. 13: 339–346.Google Scholar
  71. LePrince, O., Hendry, G. A. F. & McKersie, B. D. 1993. The mechanisms of desiccation tolerance in developing seeds. Seed Sci. Res. 3: 231–246.Google Scholar
  72. Mishler, B. D. & Churchill, S. P. 1985. Transition to a land flora: phylogenetic relationships of the green algae and bryophytes. Cladistics 1: 305–328.Google Scholar
  73. Mishler, B. D., Lewis, L. A., Buchheim, M. A., Renzaglia, K. S., Garbary, D. J., Delwiche, C. F., Zechman, F. W., Kantz, T. S., & Chapman, R. L. 1994. Phylogenetic relationships of the 'green algae' and 'bryophytes'. Ann. Missouri Bot. Gard. 81: 451–483.Google Scholar
  74. Moore, C. J., Luft, S. E. & Hallum, N. D. 1982. Fine structure and physiology of the desiccation-tolerant mosses, Barbula torquata and Triquetrella papillata (Mook. F. & Wils.) Broth., during desiccation and rehydration. Bot. Gaz. 143: 358–367.Google Scholar
  75. Muller, J., Sprender, N., Bortlik, K., Boller, T. & Wiemken, A. 1997. Desiccation increases sucrose levels in Ramonda and Haberlea, two genera of resurrection plants in the Gesneriaceae. Physiol. Plant. 100: 153–158Google Scholar
  76. Muslin, E. H. & Homann, P. H. 1992. Light as a hazard for the desiccation-resistant 'resurrection' fern Polypodium polypodioides L. Plant Cell Environ. 15: 81–89.Google Scholar
  77. Noailles, M. C. 1978. Etude ultrastructurale de la recuperation hydrique apres une periode de secheresse chez une Hypnobryale: Pleurozium schreberi (Willd.) Mitt. Ann. Sci. Nat. Bot. 19: 249–265.Google Scholar
  78. O'Mahony, P. & Oliver, M. J. 1998. Characterization of a desiccation responsive small GTP-binding protein (Rab2) from the desiccation tolerant grass Sporobolus stapfianus. Plant Mol. Biol. 39: 809–821.Google Scholar
  79. Oliver, M. J. 1991. Influence of protoplasmic water loss on the control of protein synthesis in the desiccation-tolerant moss Tortula ruralis: Ramifications for a repair-based mechanism of desiccation tolerance. J. Plant Physiol. 97: 1501–1511.Google Scholar
  80. Oliver, M. J. 1996. Desiccation tolerance in plant cells. A mini review. Physiol. Plant. 97: 779–787.Google Scholar
  81. Oliver, M. J. & Bewley, J. D. 1984a. Desiccation and ultrastructure in bryophytes. Adv. Bryol. 2: 91–131.Google Scholar
  82. Oliver, M. J. & Bewley, J. D. 1984b. Plant desiccation and protein synthesis: VI. Changes in protein synthesis elicited by desiccation of the moss Tortula ruralis are effected at the translational level. J. Plant Physiol. 74: 923–927.Google Scholar
  83. Oliver, M. J. & Bewley, J. D. 1997. Desiccation tolerance of plant tissues: A mechanistic overview. Hort. Rev. 18: 171–214.Google Scholar
  84. Oliver, M. J. & Wood, A. J. 1997. Desiccation tolerance in mosses. Pp. 1–26. In: Koval, T. M. (ed.) Stress induced processes in higher eukaryotic cells. Plenum Press, New York.Google Scholar
  85. Oliver, M. J., Wood, A. J. & O'Mahony, P. 1997. How some plants recover from vegetative desiccation: a repair based strategy. Acta Physiol. Plant. 19: 419–425.Google Scholar
  86. Piatkowski, D., Schneider, K., Salamini, F. & Bartels, D. 1990. Characterization of five abscisic acid-responsive cDNA clones from the desiccation-tolerant plant Craterostigma plantagineum and their relationship to other water-stress genes. J. Plant Physiol. 94: 1682–1688.Google Scholar
  87. Platt, K. A., Oliver, M. J. & Thomson, W. W. 1994. Membranes and organelles of dehydrated Selaginella and Tortula retain their normal configuration and structural integrity: freeze fracture evidence. Protoplasma 178: 57–65.Google Scholar
  88. Proctor, M. C. F., Nagy, Z., Csintalan, Zs. & Takács, Z. 1998.Watercontent components in bryophytes: analysis of pressure-volume relationships. J. Exp. Bot. 49: 1845–1854.Google Scholar
  89. Reynolds, T. L. 1992. Strategies for survival in the desiccationtolerant fern Polypodium virginianum. PhD Thesis, University Guelph, Canada.Google Scholar
  90. Reynolds, T. L. & Bewley, J. D. 1993a. Characterization of protein synthetic changes in a desiccation-tolerant fern, Polypodium virginianum. Comparison of the effects of drying, rehydration and abscisic acid. J. Exp. Bot. 44: 921–928.Google Scholar
  91. Reynolds, T. L. & Bewley, J. D. 1993b. Abscisic acid enhances the ability of the desiccation-tolerant fern Polypodium virginianum to withstand drying. J. Exp. Bot. 44: 1771–1779.Google Scholar
  92. Roberts, J. K., DeSimone, N. A., Lingle, W. L. & Dure, L. III. 1993. Cellular concentrations and uniformity of cell-type accumulation of two LEA proteins in cotton embryos. The Plant Cell 5: 769–780.Google Scholar
  93. Schonbeck, M. W. & Bewley, J. D. 1981a. Responses of the moss Tortula ruralis to desiccation treatments. I. Effects of minimum water content and rates of dehydration and rehydration. Can. J. Bot. 59: 2698–2706.Google Scholar
  94. Schonbeck, M. W. & Bewley, J. D. 1981b. Responses of the moss Tortula ruralis to desiccation treatments. II. Variations in desiccation tolerance. Can. J. Bot. 59: 2707–2712.Google Scholar
  95. Schwab, K. B., Schreiber, U. & Heber, U. 1989. Response of photoshynthesis and respiration of resurrection plants to desiccation and rehydration. Planta 177: 217–227.Google Scholar
  96. Scott, H. B. II & Oliver, M. J. 1994. Accumulation and polysomal recruitment of transcripts in response to desiccation and rehydration of the moss Tortula ruralis. J. Exp. Bot. 45: 577–583.Google Scholar
  97. Senaratna, T., McKersie, B. D. & Bowley, S. R. 1990. Artificial seeds of alfalfa. Indication of desiccation tolerance in somatic embryos. In Vitro Cell Dev. Biol. 26: 85–90.Google Scholar
  98. Sherwin, H. W. & Farrant, J. M. 1996. Differences in rehydration of three desiccation-tolerant angiosperm species. Ann. Bot. 78: 703–710.Google Scholar
  99. Sherwin, H. W. & Farrant, J. M. 1998. Protection mechanism against excess light in the resurrection plants Craterosigma wilmsii and Xerophyta viscosa. Plant Growth Reg. 24: 203–210.Google Scholar
  100. Skriver, K. & Mundy, J. 1990. Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2: 503–512.Google Scholar
  101. Smirnoff, N. 1992. The carbohydrates of bryophytes in relation to desiccation tolerance. J. Bryol. 17: 185–191.Google Scholar
  102. Smirnoff, N. 1993. Role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125: 27–58.Google Scholar
  103. Strauss, G. & Hauser, H. 1986. Stabilization of small uni-lamellar phospholipid vesicles by sucrose during freezing and dehydration. Pp. 318–326. In: Leopold, A. C. (ed.), Membranes, metabolism and dry organisms. Cornell University Press. Ithaca, New York.Google Scholar
  104. Tuba, Z., Lichtenthaler, H. K., Csintalan, Z. & T. Pó cs. 1993a. Regreening of desiccated leaves of the poikilochlorophyllous Xerophyta scabrida upon rehydration. J. Plant Physiol. 142: 103–108.Google Scholar
  105. Tuba, Z., Lichtenthaler, H. K., Maroti, I. & Csintalan, Z. 1993b. Resynthesis of thylakoids and functional chloroplasts in the desiccated leaves of the poikilochlorophyllous plant Xerophyta scabrida upon rehydration. J. Plant Physiol. 142: 742–748.Google Scholar
  106. Tuba, Z., Lichtenthalter, H. K., Csintalan, Zs., Nagy, Z. & Szente, K. 1994. Reconstitution of chlorophylls and photosynthetic CO2 assimilation upon rehydration of the desiccated poikilochlorophyllous plant Xerophyta scabrida (Pax) Th. Dur. et Schinz. Planta 192: 414–420.Google Scholar
  107. Tuba, Z., Lichtenthalter, H. K., Csintalan, Zs., Nagy, Z. & Szente, K. 1996. Loss of chlorophylls, cessation of photosynthetic CO2 assimilation and respiration in the poikilochlorophyllous plant Xerophyta scabrida during desiccation. Physiol. Plant. 96: 383–388.Google Scholar
  108. Tuba, Z., Smirnoff, N., Csintalan, Zs., Szente, K. & Nagy, Z. 1997. Respiration during slow desiccation of the poikilochlorophyllous desiccation tolerant plant Xerophyta scabrida at present-day CO2 concentration. J. Plant Physiol. Biochem. 35: 381–386.Google Scholar
  109. Tuba, Z., Proctor, M. C. F. & Csintalan, Zs. 1998. Ecophysiological responses of homoiochlorophyllous and poikilochlorophyllous desiccation tolerant plants: a comparison and an ecological perspective. Plant Growth Reg. 24: 211–217.Google Scholar
  110. Tucker, E. B., Costerton, J.W. & Bewley, J. D. 1975. The ultrastructure of the moss Tortula ruralis on recovery from desiccation. Can. J. Bot. 53: 94–101.Google Scholar
  111. Wellington, P. S. 1956. Studies on the germination of cereals. I. The germination of wheat grains in the ear during development, ripening and after-ripening. Ann. Bot. 20: 105–120.Google Scholar
  112. Werner, O., Espin, R. M. R., Bopp, M. & Atzorn, R. 1991. Abscisicacid-induced drought tolerance in Funaria hygrometrica Hedw. Planta 186: 99–103.Google Scholar
  113. Wood, A. J. & Oliver, M. J. 1999. Translational control in plant stress: Formation of messenger ribonucleoprotein complexes (mRNPs) in Tortula ruralis in response to desiccation. Plant J. 18(4): 359–370.Google Scholar
  114. Wood, A. J., Duff, R. J. & Oliver, M. J. 1999. Expressed sequence Tags (ESTs) from desiccated Tortula ruralis identify a large number of novel plant genes. Plant Cell Physiol. 40: 361–368.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Melvin J. Oliver
    • 1
  • Zoltán Tuba
    • 2
  • Brent D. Mishler
    • 3
  1. 1.Plant Stress and Water Conservation Laboratory, United States Department of AgricultureAgricultural Research ServiceLubbockUSA
  2. 2.Department of Botany and Plant PhysiologyUniversity of Agricultural SciencesGödöllõHungary
  3. 3.University Herbarium, Jepson Herbarium, and Department of Integrative BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations