Plant Ecology

, Volume 151, Issue 1, pp 5–17 | Cite as

The discovery, scope, and puzzle of desiccation tolerance in plants

  • Peter Alpert


The modern scientific study of desiccation tolerance began in 1702 when Anthony von Leeuwenhoek discovered that rotifers could survive without water for months. By 1860, the controversy over whether organisms could dry up without dying had reached such a pitch that a special French commission was convened to adjudicate the dispute. In 2000, we know that a few groups of animals and a wide variety of plants can tolerate desiccation in the active, adult stages of their life cycles. Among plants, this includes many lichens and bryophytes, a few ferns, and a very few flowering plants, but no gymnosperms nor trees. Some desiccation-tolerant species can survive without water for over ten years, recover from desiccation to unmeasurably low water potentials, and, when plants are desiccated, endure temperature extremes from −272 to 100 °C. Desiccation-tolerant plants occur on all continents but mainly in xeric habitats or microhabitats where the cover of desiccation-sensitive species is low. Two main puzzles arise from these patterns: What are the mechanisms by which plants tolerate desiccation? and Why are desiccation-tolerant plants not more ecologically widespread? Recent molecular and biochemical studies suggest that there are multiple mechanisms of tolerance, many of which involve protection from oxidants and from the loss of configuration of macromolecules during dehydration. Hypotheses to explain the restricted ecological range of desiccation-tolerance plants include inability to maintain a cumulative positive carbon balance during repeated cycles of wetting and drying and inherent trade offs between desiccation tolerance and growth rate.

Angiosperm Biogeography Bryophyte Desiccation tolerance Growth form Habitat History 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel, W. O. 1956. Die Austrocknungsresistenz der Laubmoose, Sitzungsberichte. Osterr. Akad. Wiss. Math.-natur. Kl. Abteil. I 165(9- 10): 619–707.Google Scholar
  2. Alpert, P. 1982. Poikilohydry and desiccation tolerance in some xerophytic mosses. Dissertation, Harvard University, Cambridge, Massachusetts.Google Scholar
  3. Alpert, P. 1984. Analysis of chlorophyll content in mosses through extraction in DMSO. Bryologist 87: 363–365.Google Scholar
  4. Alpert, P. 1985. Distribution quantified by microtopography in an assemblage of saxicolous mosses. Vegetatio 64: 131–139.Google Scholar
  5. Alpert, P. 1990. Microtopography as habitat structure for mosses on rocks. Pp. 120–140. In: McCoy, E., Bell, S. A. & Mushinsky, H. (eds), Habitat structure: the physical arrangement of objects in space. Chapman and Hall, London.Google Scholar
  6. Alpert, P. & Oechel, W. C. 1985. Carbon balance limits the distribution of Grimmia laevigata, a desiccation-tolerant plant. Ecology 66: 660–669.Google Scholar
  7. Alpert, P. & Oechel, W. C. 1987. Comparative patterns of net photosynthesis in an assemblage of mosses with contrasting microdistributions. Amer. J. Bot. 74: 1787–1796.Google Scholar
  8. Bartels, D., Schneider, K., Terstappen, G., Piatkowski, D. & Salamini, F. 1990. Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181: 27–34.Google Scholar
  9. Barthlott, W. & Porembski, S. 1996. Ecology and morphology of Blossfeldia liliputana (Cactaceae): a poikilohydric and almost astomate succulent. Bot. Acta 109: 161–166.Google Scholar
  10. Barthlott, W., Gröger, A. & Porembski, S. 1993. Some remarks on the vegetation of tropical inselbergs: diversity and ecological differentiation. Biogéographica 69: 105–124.Google Scholar
  11. Bates, J. W. 1997. Effects of intermittent desiccation on nutrient economy and growth of two ecologically contrasted mosses. Annal. Bot. 79: 299–309.Google Scholar
  12. Beckett, R. P. 1999. Partial dehydration and ABA induce tolerance to desiccation-induced ion leakage in the moss Atrichum androgynum. S. Afr. J. Bot. 65: 212–217.Google Scholar
  13. Beckett, R. P., Csintalan, Z. & Tuba, Z. 2000. ABA treatment increases both the desiccation tolerance of photosynthesis and non-photochemical quenching in the moss Atrichum undulatum. Plant Ecol. 151(1) in this issue.Google Scholar
  14. Becquerel, P. 1950. La suspension de la vie des spores des bactéries et des moisissures desséchées dans le vide, vers le zéro absolue. C.R. Acad. Sci. Paris 231: 1392–1394.Google Scholar
  15. Becquerel, P. 1951. La suspension de la vie des spores des algues, lichens, et mousses aux confins du zéro absolue et rô le de la synérè se réversible pour leur survie au dégel expliquant l'existence de la flore polaire et des hautes altitudes. C.R. Acad. Sci. Paris 232: 22–25.Google Scholar
  16. Bertsch, A. 1970. CO2-Gaswechsel und Wasseraushalt der aerophilen Grünalge Apatococcus lobotus. Planta 70: 46–72.Google Scholar
  17. Bewley, J. D. 1973. Desiccation and protein synthesis in the moss Tortula ruralis. Can. J. Bot. 51: 203–206.Google Scholar
  18. Bisby, G. R. 1945. Longevity of Schizophyllum commune. Nature 155: 732–733.Google Scholar
  19. Bopp, M. & Werner, O. 1993. Abscisic acid and desiccation tolerance in mosses. Bot. Acta 106: 103–106.Google Scholar
  20. Breuil-Sée, A. 1993. Recorded desiccation-survival times in bryophytes. J. Bryol. 17: 679–684.Google Scholar
  21. Bristol, B. M. 1916. On the remarkable retention of vitality in moss protonema. New Phytol. 15: 137–143.Google Scholar
  22. Broca, P. 1860. Rapport sur la question soumise à la Société de Biologie au sujet de la reviviscence des animaux desséchés. Mém. Soc. Biol., Paris 2: 1–140.Google Scholar
  23. Clausen, E. 1952. Hepatics and humidity. A study on the occurrence of hepatics in a Danish tract and the influence of relative humidity on their distribution. Dansk Bot. Arkiv 15: 1–80.Google Scholar
  24. Clegg, J. S. 1973. Do dried cryptobiotes have a metabolism? Pp. 141–146. In: Crowe, J. H. & Clegg, J. S. (eds), Anhydrobiosis. Dowden, Hutchinson & Ross, Inc., Stroudsburg, Pennsylvania.Google Scholar
  25. Clegg, J. S. 1986. The physical properties and metabolic status of Artemia cysts at low water contents: the 'water replacement hypothesis'. Pp. 169–187. In: Leopold, A. C. (ed.), Membranes, metabolism, and dry organisms. Cornell University Press, New York.Google Scholar
  26. Close, T. J., Fenton, R. D., Yang, A., Asghar, R., DeMason, D. A., Crone, D. E., Meyer, N. C. & Moonan, F. 1993. Dehydrin: the protein. Pp. 104–118. In: Close, T. J. & Bray, E. A. (eds), Plant responses to cellular dehydration during environmental stress. Proceedings, 16th Annual Riverside Symposium in Plant Physiology. American Society of Plant Physiologist, Rockville, Maryland.Google Scholar
  27. Crowe, J. H., Clegg, J. S. & Crowe, L. M. 1998. Anhydrobiosis: the water replacement hypothesis. Pp. 440–455. In: Ried, D. S. (ed.), The properties of water in foods. Chapman & Hall, New York.Google Scholar
  28. Crowe, J. H., Hoekstra, F. A. & Crowe, L. M. 1992. Anhydrobiosis. Ann. Rev. Physiol. 54: 579–599.Google Scholar
  29. Csintalan, Z., Takács, Z., Proctor, M. C. F., Lichtenthaler, H. K. & Tuba, Z. 1998. Desiccation and rehydration responses of desiccation tolerant moss and lichen species from a temperate semidesert grassland. J. Hattori Bot. Club 84: 71–80.Google Scholar
  30. Csintalan, Z., Proctor, M. C. F. & Tuba, Z. 1999. Chlorophyll fluorescence during drying and rehydration in the mosses Rhytidiadelphus loreus (Hedw.)Warnst., Anomodon viticulosus (Hedw.) Hook. & Tayl. and Grimmia pulvinata (Hedw.) Sm. Annal. Bot. 84: 235–244.Google Scholar
  31. Daniel, V. & Gaff, D. F. 1980. Desiccation-induced changes in the protein complement of soluble extract from leaves of resurrection plants and related desiccation-tolerant species. Annal. Bot. 45: 163–171.Google Scholar
  32. Davey, M. C. 1997. Effects of continuous and repeated dehydration on carbon fixation by bryophytes from the maritime Antarctic. Oecologia 110: 25–31.Google Scholar
  33. Deltoro, V. I., Calatayud, A., Gimeno, C., Abadia, A. & Barreno, E. 1998. Changes in chlorophyll a fluorescence, photosynthetic CO2 assimilation and xanthophyll cycle interconversions during dehydration in desiccation-tolerant and intolerant bryophytes. Planta 207: 224–228.Google Scholar
  34. Dilks, T. J. K. & Proctor, M. C. F. 1974. The pattern of recovery of bryophytes after desiccation. J. Bryol. 8: 97–115.Google Scholar
  35. Dodds, W. K., Gudder, D. A. & Mollenbauer, D. 1995. The ecology of Nostoc. J. Phycol. 31: 2–18.Google Scholar
  36. Doyè re, M. 1842. Sur la faculté qui possè dent les tardigrades, les rotifers, les anguillules des toits, et quelques autres animalcules, de revenir à la vie aprè s avoir été complè tement desséchées. Annal. Sci. Nat. Partie Zool. 18: 5–35.Google Scholar
  37. Eickmeier, W. G., Casper, C. & Osmond, C. B. 1993. Chlorophyll fluorescence in the resurrection plant Selaginella lepidophylla (Hook & Grev.) Spring during high-light and desiccation stress, and evidence for zeaxanthin-associated photoprotection. Planta 189: 30–38.Google Scholar
  38. Farrant, J.M. 2000. A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Ecol. 151(1) in this issue.Google Scholar
  39. Farrant, J. M. & Sherwin, H. W. 1998. Mechanisms of desiccation tolerance in seeds and resurrection plants. Pp. 109–120. In: Taylor, A. G. & Huang, X.-L. (eds), Progress in seed science research. Communication Services of the New York State Experimental Station, Geneva, New York.Google Scholar
  40. Friedmann, L. 1971. Reflected light and scanning electron microscopy of endolithic desert algae. Phycologia 10: 411–428.Google Scholar
  41. Friedmann, E. I. & Galun, M. 1974. Desert algae, lichens, and fungi. Pp. 165–212. In: Brown, G. W., Jr. (ed.) Desert biology. Academic Press, New York.Google Scholar
  42. Gaff, D. F. 1977. Desiccation tolerant vascular plants of Southern Africa. Oecologia 31: 95–109.Google Scholar
  43. Gaff, D. F. 1980. Protoplasmic tolerance of extreme stress. Pp. 207–230. In: Turner, N. C. & Kramer, P. J. (eds), Adaptation of plants to water and high temperature stress. John Wiley & Sons, New York.Google Scholar
  44. Gaff, D. F. 1981. The biology of resurrection plants. Pp. 114–146. In: Pate, J. S. & McComb, A. J. (eds), The biology of Australian plants. University of Western Australia Press, Nedlands.Google Scholar
  45. Gaff, D. F. 1986. Desiccation tolerant 'resurrection' grasses from Kenya and West Africa. Oecologia 70: 118–120.Google Scholar
  46. Gaff, D. F. 1987. Desiccation tolerant plants in South America. Oecologia 74: 133–136.Google Scholar
  47. Gaff, D. F. 1989. Responses of desiccation tolerant 'resurrection' plants to water stress. Pp. 255–268. In: Kreeb, K. H., Richter, H. & Hinckley, T. M. (eds), Structural and functional responses to environmental stresses. SPB Academic Publishing, The Hague, Netherlands.Google Scholar
  48. Gaff, D. F. 1997. Mechanisms of desiccation tolerance in resurrection vascular plants. Pp. 43–58. In: Basra, A. S. & Basra, R. K. (eds), Mechanisms of environmental stress resistance in plants. Harwood Academic Publishers, London.Google Scholar
  49. Gaff, D. F. & Bole, P. V. 1986. Resurrection grasses in India. Oecologia 71: 159–160.Google Scholar
  50. Gaff, D. F. & Churchill, D. M. 1976. Borya nitida Labill. -an Australian species in the Liliaceae with desiccation-tolerant leaves. Aust. J. Bot. 24: 209–224.Google Scholar
  51. Gaff, D. F. & Giess, W. 1986. Drought resistance in water plants in rock pools of Southern Africa. Dinteria 18: 17–37.Google Scholar
  52. Gaff, D. F. & Latz, P. K. 1978. The occurrence of resurrection plants in the Australian flora. Aust. J. Bot. 26: 485–492.Google Scholar
  53. Gaff, D. F. & Sutaryono, Y. A. 1991. Grasses with complete desiccation tolerance. Pp. 266–267. In: Proceedings of IVth International Rangeland Congress. French Grasslands Society, Montpellier, France.Google Scholar
  54. Gaff, D. F., Bartels, D. & Gaff, J. L. 1997. Changes in gene expression during drying in a desiccation tolerant grass Sporobolus stapfianus and a desiccation sensitive grass Sporobolus pyramidalis. Aust. J. Plant Physiol. 24: 617–622.Google Scholar
  55. Gauslaa, Y. & Solhaug, K. A. 1999. High-light damage in air-dry thalli of the old forest lichen Lobaria pulmonaria -interactions of irradiance, exposure duration and high temperature. J. Exper. Bot. 50: 697–705.Google Scholar
  56. Glime, J. M. & Carr, R. E. 1974. Temperature survival of Fontinalis novae-angliae. Bryologist 77: 17–22.Google Scholar
  57. Hahn, S. C., Tenhunen, J. D., Popp, P. W., Meyer, A. & Lange, O. L. 1993. Upland tundra in the foothills of the Brooks Range, Alaska: diurnal carbon dioxide exchange patterns of characteristic lichen species. Flora 188: 125–143.Google Scholar
  58. Hearnshaw, G. F. & Proctor, M. C. F. 1982. The effect of temperature on the survival of dry bryophytes. New Phytol. 90: 221–228.Google Scholar
  59. Hernandez-Garcia, C. D., Gonzales-Mancebo, J.M. & Losada-Lim, A. 1999. Water relations of some mosses growing in pine forests of Tenerife, Canary Islands. Lindbergia 24: 15–22.Google Scholar
  60. Hickel, B. 1967. Contributions to the knowledge of a xerophilic water plant, Chamaegigas intrepidus. Int. Rev. Gesamten Hydrobiol. 53: 361–400.Google Scholar
  61. Hinshiri, N. M. & Proctor, M. C. F. 1971. The effect of desiccation on subsequent assimilation and respiration of the bryophytes Anomodon viticulosus and Porella platyphylla. New Phytol. 70: 527–538.Google Scholar
  62. Hinton, H. E. 1960. A fly larva that tolerates dehydration and temperatures from −270°C to +102 °C. Nature 188: 336–337.Google Scholar
  63. Hosokawa, T. & Kubota, H. 1957. On the osmotic pressure and resistance to desiccation of epiphytic mosses from a beech forest, south-west Japan. J. Ecol. 45: 579–591.Google Scholar
  64. Ingram, J. & Bartels, D. 1996. The molecular basis of dehydration tolerance in plants. Ann. Rev. Plant Physiol. Plant Molec. Biol. 47: 377–403.Google Scholar
  65. Johansen, J. R. 1993. Cryptogamic crusts of semiarid and arid lands of North America. J. Phycol. 29: 140–147.Google Scholar
  66. Kappen, L., Lange, O. L., Schulze, E.-D., Evenari, M. & Buschbom, U. 1979. Ecophysiological investigations on lichens of the Negev desert. 6. Annual course of the photosynthetic production of Ramalina maciformis (Del.) Bory. Flora 168: 85–108.Google Scholar
  67. Kappen, L., Lange, O. L., Schulze, E.-D., Buschbom, U. & Evenari, M. 1980. Ecophysiological investigations on lichens of the Negev desert. 7. Influence of the habitat exposure on dew imbibition and photosynthetic productivity. Flora 169: 216–229.Google Scholar
  68. Keever, C. 1957. Establishment of Grimmia laevigata on bare granite. Ecology 38: 422–429.Google Scholar
  69. Keilin, D. 1959. The problem of anabiosis or latent life: history and current concept. Proc. Roy. Soc. London B 150: 149–191.Google Scholar
  70. Kranner, I. & Grill, D. 1997. Desiccation and the subsequent recovery of cryptogamics that are resistant to drought. Phyton 37: 139–150.Google Scholar
  71. Lange, O. L. 1955. Untersuchungen über die Hitzresistenz der Moose in Beziehung zu ihrer Verbreitung. II. Die Resistenz stark ausgetrockneter Moose. Flora 142: 381–399.Google Scholar
  72. Lange, O. L. 1969. CO2-Gaswechsel von Moosen nach Wasserdampfaufnahme aus dem Luftraum. Planta 89: 90–94.Google Scholar
  73. Lange, O. L., Meyer, A., Zellner, H. & Heber, U. 1994. Photosynthesis and water relations of lichen soil crusts: field measurements in the coastal fog zone of the Namib Desert. Funct. Ecol. 8: 253–264.Google Scholar
  74. Leopold, A. C. 1986. Membranes, metabolism, and dry organisms. Cornell University Press, Ithaca, New York.Google Scholar
  75. Levitt, J. 1972. Responses of plants to environmental stress. Academic Press, New York.Google Scholar
  76. Lubkeucher, J. G. & Eickmeier, W. G. 1991. Physiological benefits of stem curling for resurrection plants in the field. Ecology 74: 1073–1080.Google Scholar
  77. Makinde, A. M. 1993. Thermotolerance of selected mosses of south-westen Nigeria savanna. Niger. J. Bot. 6: 21–25.Google Scholar
  78. Malta, N. 1921. Versuche über die Widerstandsfähigkeit der Moose gegen Austrocknung. Acta Univ. Latviensis 1: 125–129.Google Scholar
  79. Marschall, M., Proctor, M. C. F. & Smirnoff, N. 1998. Carbohydrate composition and invertase activity of the leafy liverwort Porella platyphylla. New Phytol. 138: 343–353.Google Scholar
  80. Mazur, P. 1968. Survival of fungi after freezing and desiccation. Pp. 325–394. In: Ainsworth, G. C. & Sussman, A. L. (eds), The fungi. Academic Press, London.Google Scholar
  81. Meyer, H. & Santarius, K. A. 1998. Short-term thermal acclimation and heat tolerance of gametophytes of mosses. Oecologia 115: 1–8.Google Scholar
  82. Mueller, D. M. J. 1972. Observations on the ultrastructure of Buxbaumia protonema. Bryologist 75: 63–68.Google Scholar
  83. Muller, J., Sprender, N., Bortlik, K., Boller, T. & Wiemken, A. 1997. Desiccation increases sucrose levels in Ramonda and Haberlea, two genera of resurrection plants in the Gesneriaceae. Physiol. Plant. 100: 153–158.Google Scholar
  84. Murray, K. J., Harley, P. C., Beyers, J., Walz, H. & Tenhunen, J. D. 1989. Water content effects on photosynthetic response of Sphagnum mosses from the foothills of the Philip Smith Mountains, Alaska. Oecologia 79: 244–250.Google Scholar
  85. Navari-Izzo, F., Quartacci, M. F. & Sgherri, C. L. M. 1997. Desiccation tolerance in higher plants related to free radical defences. Phyton-Annal. Bot. 37: 203–214.Google Scholar
  86. Norr, M. 1974. Hitzresistenz bei Moosen. Flora 163: 388–397.Google Scholar
  87. Oliver, M. J. & Bewley, J. D. 1997. Desiccation-tolerance of plant tissues: a mechanistic overview. Horticult. Rev. 18: 171–214.Google Scholar
  88. Oliver, M. J., Mishler, B. D. & Quisenberry, J. E. 1993. Comparative measures of desiccation-tolerance in the Tortula ruralis complex. I. Variation in damage control and repair. Amer. J. Bot. 80: 127–136.Google Scholar
  89. Oliver, M. J., Tuba, Z. & Mishler, B. D. 2000. Phylogeny of desiccation-tolerance in land plants. Plant Ecol. 151(1) in this issue.Google Scholar
  90. Piatkowski, D., Schneider, K., Salamini, F. & Bartels, D. 1990. Characterization of five abscisic acid-responsive cDNA clones isolated from the desiccation tolerant plant Craterostigma plantagineum and their relationship to other water-stress genes. Plant Physiol. 94: 1682–1688.Google Scholar
  91. Pickett, F. L. 1931. Notes on xerophytic ferns. Amer. Fern J 21: 49–56.Google Scholar
  92. Porembski, S. 2000. Granitic and gneissic outcrops (inselbergs) as center of diversity for desiccation tolerant vascular plants. 151(1) in this issue.Google Scholar
  93. Porembski, S., Brown, G. & Barthlott, W. 1996. A species-poor tropical sedge community: Afrotrilepis pilosa mats on inselbergs in West Africa. Nordic J. Bot. 16: 239–245.Google Scholar
  94. Potts, M. 1994. Desiccation tolerance of prokaryotes. Microbiol. Rev. 58: 755–805.Google Scholar
  95. Potts, M. 1999. Mechanisms of desiccation tolerance in cyanobacteria. Eur. J. Phycol. 57: 43–68.Google Scholar
  96. Pouchet, M. 1859. Experiences sur la résistance vitale des animalcules pseudo-ressuscitants. C.R. Acad. Sci. Paris 49: 886–888.Google Scholar
  97. Proctor, M. C. F. 1979. Structure and eco-physiological adaptation in bryophytes. Pp. 479–509. In: Clarke, G. C. S. & Duckett, J. G. (eds), Bryophyte systematics. Academic Press, London.Google Scholar
  98. Proctor, M. C. F. 1990. The physiological basis of bryophyte production. Bot. J. Linnean Soc. 104: 61–77.Google Scholar
  99. Proctor, M. C. F. 2000. The bryophyte paradox: tolerance of desiccation, evasion of drought. Plant Ecol. 151(1) in this issue.Google Scholar
  100. Richardson, D. H. S. 1981. The biology of mosses. Blackwell Scientific, New York.Google Scholar
  101. Ried, A. 1960. Stoffwechsel und Verbreitungsgrenzen von Flechten. II. Wasser-und Assimilationshaushalt, Entquellungs-und Submersionsresistenz von Krustenflechten benachbarter Standorte. Flora 149: 345–385.Google Scholar
  102. Rundel, P. W. 1978. Ecological relationships of desert fog zone lichens. Bryologist 81: 277–293.Google Scholar
  103. Rundel, P. W. & Lange, O. L. 1980. Water relations and photosynthetic response of a desert moss. Flora 169: 329–335.Google Scholar
  104. Schierbeek, A. 1959. Measuring the invisible world. Abelard-Schuman Limited, London.Google Scholar
  105. Schiller, P., Wolf, R. & Hartung, W. 1999. A scanning electron microscopical study of hydrated and desiccated submerged leaves of the aquatic resurrection plant Chamaegigas intrepidus. Flora 194: 97–102.Google Scholar
  106. Schipperges, B. & Rydin, H. 1998. Response of photosynthesis of Sphagnum species from contrasting microhabitats to tissue water content and repeated desiccation. New Phytol. 140: 677–684.Google Scholar
  107. Schonbeck, M. & Norton, T. A. 1978. Factors controlling the upper limits of fucoid algaee on the shore. J. Exp. Marine. Biol. Ecol. 31: 303–313.Google Scholar
  108. Schröder, G. 1886. Uber die Austrocknungsfähigkeit der Pflanzen. Dissertation, University of Tübingen, Tübingen, Germany.Google Scholar
  109. Scott, P. 2000. Resurrection plants and the secrets of eternal leaf. Annal. Bot. 865: 159–166.Google Scholar
  110. Sherwin, H. W., Pammenter, N. W., February, E., Vander Willigen, C. & Farrant, J. M. 1998. Xylem hydraulic characteristics, water relations and wood anatomy of the resurrection plant Myrothamnus flabellifolius Welw. Annal. Bot. 81: 567–575.Google Scholar
  111. Smirnoff, N. 1992. The carbohydrates of bryophytes in relation to desiccation tolerance. Bryologist 17: 185–191.Google Scholar
  112. Smirnoff, N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125: 27–58.Google Scholar
  113. Takács, Z., Csintalan, Z., Sass, L., Laitat, E., Vass, I. & Tuba, Z. 1999. UV-B tolerance of bryophyte species with different degrees of desiccation tolerance. J. Photochem. Photobiol. B: Biol. 48: 210–215.Google Scholar
  114. Timasheff, S. N. 1992. A physiochemical basis for the selection of osmolytes by nature. Pp. 70–84. In: Somero, G. N. (ed), Water and life. Springer-Verlag, New York.Google Scholar
  115. Thompson, J. W. & Iltis, H. H. 1968. A fog-induced lichen community in the coastal desert of southern Peru. Bryologist 71: 31–34.Google Scholar
  116. Tuba, Z., Csintalan, Z. & Proctor, M. C. F. 1996. Photosynthetic responses of a moss, Tortula ruralis, ssp. ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance: a baseline study at present-day CO2 concentration. New Phytol. 133: 353–361.Google Scholar
  117. Tuba, Z., Proctor, M. C. F. & Csintalan, Z. 1998. Ecophysiological responses of homoiochlorophyllous and poikilochlorophyllous desiccation tolerant plants: a comparison and ecological perspective. Plant Growth Regul. 24: 211–217.Google Scholar
  118. Vicre, M., Sherwin, H. W., Driouich, A., Jaffer, M. A. & Farrant, J. M. 1999. Cell wall characteristics and structure of hydrated and dry leaves of the resurrection plant Craterostigma wilmsii, a microscopical study. J. Plant Physiol. 155: 719–726.Google Scholar
  119. Webster, T. R. & Steeves, T. A. 1964. Observations on drought resistance in Selaginella densa Rydb. Amer. Fern J 54: 189–196.Google Scholar
  120. Williams, T. G. & Flanagan, L. B. 1998. Measuring and modelling environmental influences on photosynthetic gas exchange in Sphagnum and Pleurozium. Plant Cell Environ. 21: 555–564.Google Scholar
  121. Wilson, A. T., Vickers, M. & Mann, L. R. B. 1979. Metabolism in dry pollen -a novel technique for studying anhydrobiosis. Naturwissenschaften 66: 53–54.Google Scholar
  122. Wood, J. N. & Gaff, D. F. 1989. Salinity studies with drought resistant Sporobolus species. Oecologia 78: 559–564.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Peter Alpert
    • 1
  1. 1.Department of Biology and Organismic and Evolutionary Biology and Plant Biology Graduate ProgramsUniversity of MassachusettsAmherstUSA

Personalised recommendations