Advertisement

International Journal of Primatology

, Volume 18, Issue 4, pp 651–674 | Cite as

Update on the Phylogenetic Systematics of New World Monkeys: Further DNA Evidence for Placing the Pygmy Marmoset (Cebuella) within the Genus Callithrix

  • C. M. L. Barroso
  • H. Schneider
  • M. P. C. Schneider
  • I. Sampaio
  • M. L. Harada
  • J. Czelusniak
  • M. Goodman
Article

Abstract

We determined DNA sequences spanning the 1.8-kb long intron 1 of the interstitial retinol-binding protein nuclear gene (IRBP) for Callithrix geoffroyi, Callithrix humeralifer, and Callithrix argentata. With the 22 previously determined IRBP intron 1 sequences—21 from the 16 currently recognized genera of New World monkeys—the enlarged IRBP data represent for the marmoset genus Callithrix both its argentata and its jacchus species groups. Maximum-parsimony and neighbor-joining trees, constructed for the 25 aligned IRBP intron 1 sequences, support a provisional phylogenetic classification with three families: Atelidae, containing subfamily Atelinae; Pitheciidae, containing subfamily Pitheciinae; and Cebidae, containing subfamilies Cebinae, Aotinae, and Callitrichinae. In order to have taxa at the same hierarchical rank at equivalent age, this classification has all living callitrichines in a single tribe, Callitrichini, with four subtribes: Saguinina (Saguinus), Callimiconina (Callimico), Leontopithecina (Leontopithecus), and Callitrichina (Callithrix with the pygmy marmoset, Cebuella pygmaea, merged into it). The DNA evidence shows not only that Callithrix must include C. pygmaea to be monophyletic but also that the times of separation of pygmaea and the argentata and jacchus species groups from one another are to be expected (<5 Ma—million years ago) for species in a single genus. On relating the time course of the ceboid radiation to biogeographic information, it appears that in mid-Miocene times (10–11 Ma) a basal callitrichin stock branched into the ancestral population of Saguinus in one clade and the ancestral population of Leontopithecus and Callimico–Callithrix (or Leontopithecus–Callimico and Callithrix) in another clade. The proto-lion tamarins migrated south and eastward, where they were isolated in refugia, becoming the genus Leontopithecus. The stock remaining in Amazonia gave rise to present-day Callimico and Callithrix. The latter genus occupied a vast geographic area, giving rise to the argentata and pygmaea groups in Amazonia and to the jacchus group in central and eastern Brazil.

IRBP intron 1 DNA sequences ceboid phylogenetic systematics Callithrix pygmaea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Bailey, W. J., Fitch, D. H., Tagle, D. A., Czelusniak, J., Slightom, J. L., and Goodman, M. (1991). Molecular evolution of the ψη-globin gene locus: Gibbon phytogeny and the hominoid slowdown. Mol. Biol. Evol. 8: 155–184.Google Scholar
  2. Bailey, W. J., Hayasaka, K., Skinner, C. G., Kehoe, S., Sieu, L. C., Slightom, J. L., and Goodman, M. (1992). Reexamination of the African hominoid trichotomy with additional sequences from the primate β-globin gene cluster. Mol. Phyl. Evol. 1: 97–135.Google Scholar
  3. Bremer, K. (1988). The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795–803.Google Scholar
  4. Bunn, H. F., and Forget, B. G. (1986). Hemoglobin: Molecular, Genetic, and Clinical Aspects, Saunders, Philadelphia.Google Scholar
  5. Cabot, E. L., and Beckenbach, A. T. (1989). Simultaneous editing of multiple nucleic acid and protein sequences with ESEE. Comp. Appl. Biosci. 5: 233–234.Google Scholar
  6. Felseinstein, J. P. (1989). PHYLIP— Phytogeny inference package (version 3.2). Cladistics 5: 164–166.Google Scholar
  7. Fleagle, J. G. (1988). Primate Adaptation and Evolution, Academic Press, New York.Google Scholar
  8. Fong, S.-L., Fong, W.-B., Morris, T. A., Kedzie, K. M., and Bridges, C. D. (1990). Characterization and comparative structural features of the gene for human interstitial retinol-binding protein. J. Biol. Chem. 265: 3648–3653.Google Scholar
  9. Ford, S. M. (1986). Systematics of the New World monkeys. In Swindler, D. R., and Erwin, J. (eds.), Comparative Primate Biology, Vol. I. Systematics, Evolution and Anatomy, Alan R. Liss, New York, pp. 73–135.Google Scholar
  10. Gingerich, P. D. (1984). Primate evolution: Evidence from the fossil record, comparative morphology, and molecular biology. Yearbk. Phys. Anthropol. 27: 57–72.Google Scholar
  11. Goodman, M., Olson, C. B., Beeber, J. E., and Czelusniak, J. (1982). New perspectives in the molecular biological analysis of mammalian phylogeny. Acta. Zool. Fennica 169: 119–35.Google Scholar
  12. Goodman, M., Czelusniak, J., and Beeber, J. E. (1985). Phytogeny of primates and other eutherian orders: A cladistic analysis using amino acid and nucleotide sequence data. Cladistics 1: 171–185.Google Scholar
  13. Groves, C. P. (1993). Order Primates. In Wilson, D. E., and Reader, D. M. (eds.), Mammalian Species of the World: A Taxonomic and Geographic Reference, 2nd ed., Smithsonian Institution Press, Washington, DC, pp. 243–277.Google Scholar
  14. Harada, M. L., Schneider, H., Schneider, M. P., Sampaio, I., Czelusniak, J., and Goodman, M. (1995). DNA evidence on the phylogenetic systematics of New World monkeys: Support for the sister grouping of Cebus and Saimiri from two unlinked nuclear genes. Mol. Phyl. Evol. 4: 331–349.Google Scholar
  15. Hennig, W. (1966). Phylogenetic Systematics, University of Illinois Press, Urbana (reissued 1979).Google Scholar
  16. Hershkovitz, P. (1977). Living New World Monkeys, University of Chicago Press, Chicago.Google Scholar
  17. Hill, W. C. O. (1957). Primates, Comparative Anatomy and Taxonomy, Vol. III. Hapalidae, University Press, Edinburgh.Google Scholar
  18. Jukes, T. H. and Cantor, C. R. (1969). Evolution of protein molecules. In Munro, H. N. (ed.), Mammalian Protein Metabolism, Academic Press, New York, pp. 21–32.Google Scholar
  19. Kay, R. F. (1990). The phyletic relationships of extant and fossil Pitheciinae (Platyrrhini, Anthropoidea). J. Hum. Evol. 19: 175–208.Google Scholar
  20. Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.Google Scholar
  21. Mittermeier, R. A., Rylands, A. B., and Coimbra-Filho, A. F. (1988). Systematics: Species and subspecies—an update. In Mittermeier, R. A., Rylands, A. B., Coimbra-Filho, A. F., and da Fonseca, G. A. B. (eds.), Ecology and Behavior of Neotropical Primates, Vol. 2, World Wildlife Fund, Washington, DC, pp. 13–75.Google Scholar
  22. Moynihan, M. (1976). The New World Primates: Adaptive Radiation and the Evolution of Social Behavior, Language, and Intelligence, Princeton University Press, Princeton, NJ.Google Scholar
  23. Nagamachi, C. Y., Pieczarka, J. C., and Barros, R. M. S. (1992). Karyotypic comparison among Cebuella pygmaea, Callithrix jacchus and C. emiliae (Callitrichidae, Primates) and its taxonomic implications. Genetica 85: 249–257.Google Scholar
  24. Napier, J. R., and Napier, P. H. (1967). A Handbook of Living Primates, Academic Press, New York.Google Scholar
  25. Pocock, R. J. (1925). Additional notes on the external characters of some platyrrhine monkeys. Proc. Zool. Soc. Lond. 9: 1–13.Google Scholar
  26. Porter, C. A., Sampaio, I., Schneider, H., Schneider, M. P. C., Czelusniak, J., and Goodman, M. (1995). Evidence on primate phytogeny from ε-globin gene sequences and flanking regions. J. Mol. Evol. 40: 30–55.Google Scholar
  27. Porter, C. A., Page, S. L., Czelusniak, J., Schneider, H., Schneider, M. P. C., Sampaio, I., and Goodman, M. (1997). Phylogeny and evolution of selected primates as determined by sequences of the ε-globin locus and 5′ flanking regions. Int. J. Primatol. 18: 261–295.Google Scholar
  28. Rosenberger, A. L. (1981). Systematics: The higher taxa. In Coimbra-Filho, A. F., and Mitermeier, R. (eds.), Ecology and Behavior of Neotropical Primates, Vol. 1, Acad. Brasil. Cienc., Rio de Janeiro, pp. 9–27.Google Scholar
  29. Rosenberger, A. L., Setoguchi, T., and Shigehara, N. (1990). The fossil record of callitrichine primates. J. Hum. Evol. 19: 209–236.Google Scholar
  30. Rowe, N. (1996). The Pictorial Guide to the Living Primates, Pogonios Press, East Hampton, N.Y.Google Scholar
  31. Saitou, N., and Nei, M. (1987). The neighbor-joining method; A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.Google Scholar
  32. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  33. Sanger, F., Nichlen, S. and Coulson, A. R. (1977). DNA sequencing with chain-termination inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5468.Google Scholar
  34. Schneider, H., Schneider, M. P. C., Sampaio, M. I. C., Harada, M. L., Stanhope, M., Czelusniak, J., and Goodman, M. (1993), Molecular phytogeny of the New World monkeys (Platyrrhini, Primates). Mol. Phyl. Evol. 2: 225–242.Google Scholar
  35. Schneider, H., Sampaio, I., Harada, M. L., Barroso, C. M. L., Schneider, M. P. C., Czelusniak, J., and Goodman, M. (1996). Molecular phytogeny of the New World monkeys (Platyrrhini, Primates) based on two unlinked nuclear genes: IRBP intron 1 and ε-globin sequences. Am. J. Phys. Anthropol., 100: 153–179.Google Scholar
  36. Simons, E. L. (1972). Primate Evolution: An Introduction to Man's Place in Nature, Macmillan, New York.Google Scholar
  37. Simpson, G. G. (1945). The principles of classification and classification of mammals. Am. Mus. Nat. Hist. 85: 1–350.Google Scholar
  38. Szalay, F. S., and Delson, E. (1979) Evolutionary History of the Primates, Academic Press, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • C. M. L. Barroso
    • 1
  • H. Schneider
    • 1
  • M. P. C. Schneider
    • 1
  • I. Sampaio
    • 1
  • M. L. Harada
    • 1
  • J. Czelusniak
    • 2
  • M. Goodman
    • 2
  1. 1.Departamento de GenéticaUniversidade Federal do Pará, Centro de Ciências BiológicasBelémBrazil
  2. 2.School of Medicine, Department of Anatomy and Cell BiologyWayne State UniversityDetroit

Personalised recommendations