Advertisement

Foundations of Physics Letters

, Volume 15, Issue 5, pp 439–471 | Cite as

On the final state of spherical gravitational collapse

  • Abbas Mitra
Article

Abstract

Following our recent finding [1] that, for the final state of continued spherical gravitational collapse of sufficiently massive bodies, the final gravitational mass of the fluidMƒ → 0, we show that for a physical fluid the eventual value of 2Mƒ/Rƒ → 1 rather than 2Mƒ/Rƒ2Mƒ/Rƒ< 1 (the speed of light c = 1 and the gravitational constantG = 1), indicating the approach to a zero-mass black hole. We also point out that, as the final state is approached, the curvature components tend to blow up; also the proper radial distancel and the proper time (measured along a radial worldline) Τ → ∞, indicating that actually the singularity is never attained. We also identify that the final state may correspond to the local 3-speed attaining eitherV = 0 orV → c, even though invariant circumference contraction speedU =dR/dΤ → 0. Nonetheless, at a finite observation epoch, such Eternally Collapsing Objects (ECOs) may have a local speed of collapseV≪c and the lab frame speed of collapse may be negligible because of high surface gravitational redshift. However, if quantum back reaction in the strong gravity regime would cause a phase transition of the form pressurep = - ρ, where ρ is the density of the collapsing fluid, it may be possible to have static Ultra Compact Objects (ûCOs) of arbitrary high mass [2]. While supposed Black Holes have no intrinsic magnetic field, ECOs or UCOs are likely to possess strong intrinsic magnetic fields, and we point out that there are already some tentative evidence for existence of such intrinsic magnetic fields in some Black Hole Candidates [3,4]. For the benefit of the readers who may not have gone through Paper I, we also include here the summary of the same. It clearly shows that the central result of Paper I can be derived even without knowing the meaning of the nomenclatureV or without imposing any of property ofV such as whetherV < 1 or not. In addition, we consolidate the same result from other physical considerations too.

Key words

gravitational collapse eternally collapsing object ultra compact object 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Mitra.Found. Phys. Lett. 13 (6), 543 (2000), Paper I; astroph/9910408.CrossRefGoogle Scholar
  2. 2.
    P. O. Mazur and E. Mottola,Phys. Rev. Lett, submitted (astroph/0109035).Google Scholar
  3. 3.
    S. L. Robertson,Astrophys. J. 515, 365 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    S. L. Robertson and D. Leiter,Astrophys. J. 565, 447 (2002), astro-ph/0102381.ADSCrossRefGoogle Scholar
  5. 5.
    J. R. Oppenheimer and H. Snyder,Phys. Rev. 56, 455 (1939).ADSCrossRefGoogle Scholar
  6. 6.
    D. M. Eardley and L. Smarr,Phys. Rev. D 19, 2239 (1979).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    R. Penrose,Nouvo Cimento 1, 533 (1965).Google Scholar
  8. 8.
    C. W. Misner and D. H. Sharp,Phys. Rev. 136 2B, 571 (1964).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    M. May and R. White,Phys. Rev. 141, 1233 (1965).MathSciNetGoogle Scholar
  10. 10.
    C. W. Misner, inAstrophysics and General Relativity, Vol. 1 (Brandeis University Summer School Lectures), M. Chretien, S. Deser, and J. Goldstein, eds. (1968); see pp. 180–181.Google Scholar
  11. 11.
    C. W. Misner, inRelativity Theory and Astrophysics, Vol. 3, J. Ehlers, ed. (American Mathematical Society, Providence, RI, 1967); see pp. 120–121.Google Scholar
  12. 12.
    C. W. Misner,Phys. Rev. B 137, 1360 (1965).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    W. C. Hernandez and C. W. Misner,Astrophys. J. 143, 452 (1966).ADSCrossRefGoogle Scholar
  14. 14.
    R. W. Lindquist, R. A. Schwartz, and C. W. Misner,Phys. Rev. B 137, 1364 (1965).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    L. D. Landau and E. M. Lifshitz,The Classical Theory of Fields, 4th edn. (Pergamon, Oxford, 1985).zbMATHGoogle Scholar
  16. 16.
    S. W. Hawking and G. F. R. Ellis,The Large Scale Structure of Space-time (Cambridge University Press, Cambridge, 1973).CrossRefzbMATHGoogle Scholar
  17. 17.
    D. Leiter, A. Mitra, and S. Robertson, astro-ph/0105532.Google Scholar
  18. 18.
    R. Schoen and S. T. Yau,Commun. Math. Phys.,79, 231 (1981).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    P. S. Laplace (1799); see English translation in Ref. 15.Google Scholar
  20. 20.
    A. Einstein,Ann. Math. 40, 922 (1939).ADSCrossRefGoogle Scholar
  21. 21.
    J. N. Islam,An Introduction to Mathematical Cosmolgy, (Cambridge University Press, Cambridge, 1992).Google Scholar
  22. 22.
    T. Padmanabhan,Cosmology and Astrophysics Through Problems, (Cambridge University Press, Cambridge, 1996).Google Scholar
  23. 23.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (Freeman, San Pransisco, 1973).Google Scholar
  24. 24.
    I. Tereno, astro-ph/9905144.Google Scholar
  25. 25.
    I. Tereno, astro-ph/9905298.Google Scholar
  26. 26.
    A. Mitra, astro-ph/9905175.Google Scholar
  27. 27.
    A. Mitra, astro-ph/9905329.Google Scholar
  28. 28.
    P. Crawford and I. Tereno, gr-qc/0111073.Google Scholar
  29. 29.
    V. Sabbata, M. Pavsic and E. Recami,Lett. Nuovo Cim.,19, 411 (1977).CrossRefGoogle Scholar
  30. 30.
    L. S. Abrams,Can. J. Phys.,67, 919 (1989); gr-qc/0102055.ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    S. Antoci and D.E. Liebscher, 2001; gr-qc/0102084.Google Scholar
  32. 32.
    A. Mitra, invited talk given in workshop on Black Holes, Kolkata (2001), organized by Centre for Space Physics (astroph/0105532).Google Scholar
  33. 33.
    A. Mitra,Bull. Astr. Soc. India,30, 173 (2002), invited talk given in international symposium “Gamma-ray Astrophysics Through Multi-wavelength Experiments,” Mt. Abu, India, 2001.ADSGoogle Scholar
  34. 34.
    K. Schwarzschild,Sitzungsberichte Preuss. Acad. Wiss. 424 (1916).Google Scholar
  35. 35.
    S. Antoci and A. Loinger, 1999; physics/9905030 and 9912033.Google Scholar
  36. 36.
    A. Loinger, 2000, astro-ph/0001453, also, 1999, gr-qc/9908009.Google Scholar
  37. 37.
    Z. Zakir, 1999, gr-qc/9905068.Google Scholar
  38. 38.
    J. R. Oppenheimer and G. M. Volkoff,Phys. Rev. 55, 374 (1939).ADSCrossRefGoogle Scholar
  39. 39.
    C. W. Misner and H. S. Zapolsky,Phy. Rev. Lett. 12, 635 (1964).ADSCrossRefGoogle Scholar
  40. 40.
    P. C. Vaidya,Nature 171, 260 (1953).ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    M. R. Garciaet al. Astrophys. J. 553, L47 (2000); astroph/0012452.ADSCrossRefGoogle Scholar
  42. 42.
    R. Narayan, M. R. Garcia, and J. E. McClintock, 2001; astroph/0107387.Google Scholar
  43. 43.
    S. Campana and L. Stella,Astrophys. J. 541, 849 (2000).ADSCrossRefGoogle Scholar
  44. 44.
    S. V. Vadawale, A. R. Rao, and S. K. Chakrabarti,Astron. Astrophys, in press; 2001 astro-ph/0104378.Google Scholar
  45. 45.
    K. Menou, astro-ph/0111469.Google Scholar
  46. 46.
    R. Narayan and J. Heyl, gr-qc/020408.Google Scholar
  47. 47.
    K. Dev and M. Gleiser (2000), astro-ph/0012265.Google Scholar
  48. 48.
    J. C. Miller, T. Shahbaz, and L. A. Nolan,Mon. Not. R. Astron. Soc. 294, L25 (1998).ADSCrossRefGoogle Scholar
  49. 49.
    A. Mitra, in preparation, 2002.Google Scholar
  50. 50.
    J. R. Laueret al., Astrophys. J. 369, L41 (1991).ADSCrossRefGoogle Scholar
  51. 51.
    J. Kormendy and D. Richstone,Ann. Rev. Astron. Astrophys. 33, 581 (1995).ADSCrossRefGoogle Scholar
  52. 52.
    F. Hoyle and W. A. Fowler,Nature 197, 533 (1963).ADSCrossRefGoogle Scholar
  53. 53.
    W. A. Fowler,Rev. Mod. Phys. 36, 545 (1964).ADSCrossRefGoogle Scholar
  54. 54.
    E. Agol, 2001,Astrophys. J. Lett, in press; astro-ph/0005051.Google Scholar
  55. 55.
    D. Dotani, G. Ghisellini, and G . Tagliaferri, 2001,Astron. Astrophys. in press; astro-ph/0105203.Google Scholar
  56. 56.
    F. Munyaneza and R. D. Viollier,Astrophys. J. 2001, submitted; astro-ph/0103466.Google Scholar
  57. 57.
    N. Bilic,Phys. Lett. B 515, 105 (2001); astro-ph/0106209.ADSCrossRefGoogle Scholar
  58. 58.
    A. Svidzinsky, 2001; astro-ph/0105544.Google Scholar
  59. 59.
    K. Lake,Phys. Rev. Lett. 68, 3192 (1992).MathSciNetCrossRefGoogle Scholar
  60. 60.
    B. K. Harrison, K. S. Thome, M. Wakano, and J. A. Wheeler,Gravitation Theory and Gravitational Collapse (University Press, Chicago, 1965), p. 75Google Scholar
  61. 61.
    Ya. B. Zeldovich and I. D. Novikov,Relativistic Astrophysics, Vol. 1, (University Press, Chicago, 1971), p. 297.Google Scholar
  62. 62.
    F. I. Cooperstock, S. Jhingan, P. S. Joshi, and T. P. Singh,Class. Quan. Grav. 14, 2197 (1997).ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    D. N. Page and S. W. Hawking,Astrophys. J. 206, 1 (1976).ADSCrossRefGoogle Scholar

References

  1. 1.
    D. F. Torres, S. Capozziello, and G. Lambiase,Phys. Rev. D 62, 104012 (2000); astro-ph/0004064.ADSCrossRefGoogle Scholar
  2. 2.
    D. F. Torres,Nucl. Phys. B 626, 377 (2002); hep-ph/0201154.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Abbas Mitra
    • 1
  1. 1.Nuclear Research LaboratoryBhabha Atomic Research CenterMumbaiIndia

Personalised recommendations