Advertisement

Studia Geophysica et Geodaetica

, Volume 43, Issue 1, pp 1–6 | Cite as

Differences between Mean Sea Levels for the Pacific, Atlantic and Indian Oceans From Topex/Poseidon Altimetry

  • Milan Burša
  • Jan Kouba
  • Achim Müller
  • Karel Raděj
  • Scott A. True
  • Viliam Vatrt
  • Marie Vojtíšková
Article

Abstract

Geopotential values ―W of the mean equipotential surfaces representing the mean ocean topography were computed on the basis of four years (1993 - 1996) TOPEX/POSEIDON altimeter data: ―W = 62 636 854.10m2s−2for the Pacific (P), ―W = 62 636 858.20m2s−2for the Atlantic (A), ―W = 62 636 856.28m2s−2for the Indian (I) Oceans. The corresponding mean separations between the ocean levels were obtained as follows: A − P = − 42 cm, I− P = − 22 cm, I − A = 20 cm, the rms errors came out at about 0.3 cm. No sea surface topography model was used in the solution.

sea levels mean differences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AVISO, Sea Level Anomalies. Aviso User Handbook, AVI-NT–011–312-CN, Edition 3.0, November 1997.Google Scholar
  2. AVISO, Corrected Sea Surface Heights. Aviso User Handbook, AVI-NT-011–311-CN, Edition 3.0, November 1997.Google Scholar
  3. Burša, M., Raděj, K., Šíma, Z, True, S. A., Vatrt, V.: 1997a: Determination of the Geopotential Scale Factor from TOPEX/POSEIDON Satellite Altimetry. Studia geoph. et geod., 44, 203–216.Google Scholar
  4. Burša, M., Raděj, K., Šíma, Z, True, S. A., Vatrt, V.; 1997b: Test for Accuracy of Recent Geopotential Models. International Geoid Service Bulletin No. 6, D.I.I.A.R.-Politecnico di Milano, Italy, 167–188.Google Scholar
  5. Burša. M, Kouba, J., Raděj, K., True, S. A., Vatrt, V., Vojtfšková, M.; 1998: Mean Earth's Equipotential Surface from TOPEX/POSEIDON Altimetry. Studia geoph. et geod., 42, in print.Google Scholar
  6. IAG SC3 Final Report. Travaux de L'Association Internationale de Géodésie, 30, 370–384, 1995.Google Scholar
  7. Lemoine, F. G., Smith, D. E., Kunz, L., Smith, R., Pavlis, E. C., Klosko, S. M., Chinn, D. S., Torrence, M. H., Williamson, R. G., Cox, C. M., Rachlin, K. E., Wang, Z. M., Kenyon, S. C., Salman, R., Trimmer, R, Rapp, R. H., Nerem, R. S.; 1996: The Development of the NASA GSFC and NIMA Joint Geopotential Model. Proceedings of the International Symposium on Gravity, Geoid and Marine Geodesy (GRAGEOMAR 1996), The University of Tokyo, Japan, September 30–October 5, Springer Vlg, 461–469.Google Scholar
  8. Molodensky, M. S.; 1945: Fundamental Problems of Geodetic Gravimetry, (in Russian). TRUDY TsNIIGAiK, 42, Geodezizdat, Moscow.Google Scholar
  9. Molodensky, M. S., Yeremeev, V. F., Yurkina, M. I.; 1960: Methods for Study of the External Gravitational Field and Figure of the Earth, (in Russian). TRUDY TsNIIGAiK, 131, Geodezizdat, Moscow. English transl.: Israel Program for Scientific Translations, pp. 248, Jerusalem 1962.Google Scholar
  10. Rapp, R. H., Zhang, C., Yi, Z; 1996: Analysis of Dynamic Ocean Topography Using TOPEX Data and Orthonormal Functions, Journ. Geophys. Res.-Oceans, 101,C10, 22485–22494.Google Scholar
  11. Ries, J. C., Eanes, R. J., Shum, C. K., Watkins, M. M.; 1992: Progress in the Determination of the Gravitational Coefficient of the Earth, Geophys. Res. Letters, 19,No. 6, 529–531.Google Scholar

Copyright information

© StudiaGeo s.r.o. 1999

Authors and Affiliations

  • Milan Burša
    • 1
  • Jan Kouba
    • 2
  • Achim Müller
    • 3
  • Karel Raděj
    • 4
  • Scott A. True
    • 5
  • Viliam Vatrt
    • 4
  • Marie Vojtíšková
    • 4
  1. 1.Astronomical InstituteAcademy of Sciences of the Czech RepublicPragueCzech Republic
  2. 2.Geodetic Survey DivisionNatural Resources CanadaOttawaCanada
  3. 3.Federal Arned ForcesGeographic OfficeEuskirchenFed. Rep. of Germany
  4. 4.Topographical Service of the Army of the Czech RepublicDobruškaCzech Republic
  5. 5.National Image and Mapping AgencySt. LouisU.S.A

Personalised recommendations