Archives of Sexual Behavior

, Volume 31, Issue 5, pp 413–419 | Cite as

Defining the Brain Systems of Lust, Romantic Attraction, and Attachment

  • Helen E. Fisher
  • Arthur Aron
  • Debra Mashek
  • Haifang Li
  • Lucy L. Brown


Mammals and birds have evolved three primary, discrete, interrelated emotion–motivation systems in the brain for mating, reproduction, and parenting: lust, attraction, and male–female attachment. Each emotion–motivation system is associated with a specific constellation of neural correlates and a distinct behavioral repertoire. Lust evolved to initiate the mating process with any appropriate partner; attraction evolved to enable individuals to choose among and prefer specific mating partners, thereby conserving their mating time and energy; male–female attachment evolved to enable individuals to cooperate with a reproductive mate until species-specific parental duties have been completed. The evolution of these three emotion–motivation systems contribute to contemporary patterns of marriage, adultery, divorce, remarriage, stalking, homicide and other crimes of passion, and clinical depression due to romantic rejection. This article defines these three emotion–motivation systems. Then it discusses an ongoing project using functional magnetic resonance imaging of the brain to investigate the neural circuits associated with one of these emotion–motivation systems, romantic attraction.

romantic attraction sex drive FMRI neural circuits 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartels, A., & Zeki, S. (2000). The neural basis of romantic love. NeuroReport, 11, 1–6.Google Scholar
  2. Black, J. M. (Ed.). (1996). Partnerships in birds: The study of monogamy. New York: Oxford University Press.Google Scholar
  3. Buss, D. M. (1989). Sex differences in human mate preferences: Evolutionary hypotheses tested in 37 cultures. Behavioral and Brain Sciences, 12, 1–49.Google Scholar
  4. Buss, D. M. (1994). The evolution of desire: Strategies of human mating. New York: Basic Books.Google Scholar
  5. Carter, C. S. (1992). Oxytocin and sexual behavior. Neuroscience and Biobehavioral Reviews, 16, 131–144.Google Scholar
  6. Carter, C. S., DeVries, A. C., & Getz, L. L. (1995). Physiological substrates of mammalian monogamy: The prairie vole model. Neuroscience and Biobehavioral Reviews, 19, 303–314.Google Scholar
  7. Colle, L. M., & Wise, R. A. (1988). Facilitory and inhibitory effects of nucleus accumbens amphetamine on feeding. In P. W. Kalivas & C. B. Nemeroff (Eds.), The mesocorticolimbic dopamine system (Vol. 537, pp. 491–492). New York: The New York Academy of Science.Google Scholar
  8. Damasio, A. R. (1999). The feeling of what happens: Body and emotion in the making of consciousness. New York: Harcourt Brace.Google Scholar
  9. Davidson, R. J. (1994). Complexities in the search for emotion-specific physiology. In P. Ekman & R. J. Davidson (Eds.), The nature of emotion: Fundamental questions (pp. 237–242). NewYork: Oxford University Press.Google Scholar
  10. Ellis, B. J., & Symons, D. (1990). Sex differences in sexual fantasy: An evolutionary psychological approach. Journal of Sex Research, 27, 527–555.Google Scholar
  11. Fisher, H. E. (1998). Lust, attraction and attachment in mammalian reproduction. Human Nature, 9, 23–52.Google Scholar
  12. Fisher, H. E. (1999). The first sex: The natural talents of women and how they are changing the world. New York: Random House.Google Scholar
  13. Fisher, H. E. (2000a). Brains do it: Lust, attraction, and attachment. Cerebrum: The Dana Forum on Brain Science, 2, 23–42.Google Scholar
  14. Fisher, H. E. (2000b). Lust, attraction, attachment: Biology and evolution of the three primary emotion systems for mating, reproduction and parenting. Journal of Sex Education and Therapy, 25, 96–104.Google Scholar
  15. Fisher, H. E., Aron, A., Cristiani, M., Mashek, D., Hasegawa, T., Hasegawa, M., et al. (2002). Romantic love in two cultures: Questionnaire illustrating gender and cultural differences in feelings of romantic attraction in The United States and Japan. Manuscript in preparation.Google Scholar
  16. Flament, M. F., Rapoport, J. L., & Bert, C. L. (1985). Clomipramine treatment of childhood obsessive-compulsive disorder: A double-blind controlled study. Archives of General Psychiatry, 42, 977–986.Google Scholar
  17. Fowlkes, M. R. (1994). Singleworlds and homosexual lifestyles: Patterns of sexuality and intimacy. In A. S. Rossi (Ed.), Sexuality across the life course (pp. 181–184). Chicago: University of Chicago Press.Google Scholar
  18. Gottman, J. (1994). What predicts divorce: The relationship between marital processes and marital outcomes. Hillsdale, NJ: Erlbaum.Google Scholar
  19. Griffin, M. G., & Taylor, G. T. (1995). Norepinephrine modulation of social memory: Evidence for a time-dependent functional recovery of behavior. Behavioral Neuroscience, 109, 466–473.Google Scholar
  20. Harris, H. (1995). Rethinking heterosexual relationships in Polynesia: A case study of Mangaia, Cook Island. In W. Jankowiak (Ed.), Romantic passion: A universal experience? New York: Columbia University Press.Google Scholar
  21. Hatfield, E., & Rapson, R. L. (1996). Love and sex: Cross-cultural perspectives. Needham Heights, MA: Allyn and Bacon.Google Scholar
  22. Hatfield, E., & Sprecher, S. (1986). Measuring passionate love in intimate relations. Journal of Adolescelnce, 9, 383–410.Google Scholar
  23. Hollander, E., Fay, M., Cohen, B., Campeas, R., Gorman, J. M., & Liebowitz, M. R. (1988). Serotonergic and noradrenergic sensitivity in obsessive-compulsive disorder: Behavioral findings. American Journal of Psychiatry, 145, 1015–1017.Google Scholar
  24. Jankowiak, W. R., & Fischer, E. F. (1992). A cross-cultural perspective on romantic love. Ethnology, 31, 149–155.Google Scholar
  25. Kiyatkin, E. A. (1995). Functional significance of mesolimbic dopamine. Neuroscience and Biobehavioral Reviews, 19, 573–598.Google Scholar
  26. Kruk, A. L., & Pycock, C. J.(1991). Neurotransmitters and drugs. New York: Chapman and Hall.Google Scholar
  27. Laumann, E. O., Gagnon, J. H., Michael, R. T., & Michaels, S. (1994). The social organization of sexuality: Sexual practices in the United States. Chicago: University of Chicago Press.Google Scholar
  28. LeDoux, J. (1996) The emotional brain. New York: Simon and Schuster.Google Scholar
  29. LeDoux, J. E., Sakaguchi, A., & Reis, D. J. (1984). Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned by acoustic stimuli. Journal of Neuroscience, 4, 683–698.Google Scholar
  30. Martin-Soelch, C., Leenders K. L., Chevalley, A. F., Missimer, J., Kunig, G., Magyar, S., et al. (2001). Reward mechanisms in the brain and their role in dependence: Evidence from neurophysiological and neuroimaging studies. Brain Research Reviews, 36, 139–149.Google Scholar
  31. Mashek, D., Aron, A., & Fisher, H. E. (2000). Identifying, evoking and measuring intense feelings of romantic love. Representative Research in Social Psychology, 24, 48–55.Google Scholar
  32. Morell, S. (1998). A new look at monogamy. Science, 281, 1982–1983.Google Scholar
  33. Murray, S. L., & Holmes, J. G. (1997). A leap of faith? Positive illusions in romantic relationships. Personality and Social Psychology Bulletin, 23, 586–604.Google Scholar
  34. Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions. New York: Oxford University Press.Google Scholar
  35. Pedersen, C. A., Caldwell, J. D., Jirikowsk, G. F., & Insel, T. R. (Eds.). (1992). Oxytocin in maternal, sexual and social behaviors. New York: New York Academy of Sciences.Google Scholar
  36. Post, R. M., Weiss, S. R. B., & Pert, A. (1988). Cocaine-induced behavioral sensitization and kindling: Implications for the emergence of psychopathology and seizures. In P. W. Kalivas & C. B. Nemeroff (Eds.), The mesocorticolimbic dopamine system (Vol. 537, pp. 292–308). New York: The New York Academy of Sciences.Google Scholar
  37. Salamone, J. D. (1996). The behavioral neurochemistry of motivation: Methodological and conceptual issues in studies of the dynamic activity of nucleus accumbens dopamine. Journal of Neuroscience Methods, 64, 137–149.Google Scholar
  38. Scatton, B., D'Angio, M., Driscoll, P., & Serrano, A. (1988). An in vivo voltammetric study of the response of mesocortical and mesoaccumbens dopaminergic neurons to environmental stimuli in strains of rats with differing levels of emotionality. In P. W. Kalivas & C. B. Nemeroff (Eds.), The mesocorticolimbic dopamine system (Vol. 537, pp. 124–137). New York: The New York Academy of Sciences.Google Scholar
  39. Schultz, W. (2000). Multiple reward signals in the brain. Nature Reviews: Neuroscience, 1, 199–207.Google Scholar
  40. Sherwin, B. B., & Gelfand, M. M. (1987). The role of androgen in the maintenance of sexual functioning in oophorectomized women. Psychosomatic Medicine, 49, 397–409.Google Scholar
  41. Sherwin, B. B., Gelfand, M. M., & Brender, W. (1985). Androgen enhances sexual motivation in females:Aprospective cross-over study of sex steroid administration in the surgical menopause. Psychosomatic Medicine, 7, 339–351.Google Scholar
  42. Tassin, J. P., Herve, D., Blanc, G., & Glowinski, J. (1980). Differential effects of a two-minute open field session on dopamine utilization in the frontal cortices of BALB/C and C57 BL/6 mice. Neuroscience Letters, 17, 67–71.Google Scholar
  43. Tavris, C. (1992). The mismeasure of woman. New York: Simon & Schuster.Google Scholar
  44. Tennov, D. (1979). Love and limerence: The experience of being in love. New York: Stein and Day.Google Scholar
  45. Thoren, P., Asberg, M., & Bertilsson, L. (1980). Clomipramine treatment of obsessive disorder: Biochemical and clinical aspects. Archives of General Psychiatry, 37, 1289–1294.Google Scholar
  46. Wang, Z., Yu, G., Cascio, C., Liu, Y., Gingrich, B., & Insel, T. R. (1999). Dopamine D2 receptor-mediated regulation of partner preferences in female prairie voles (Microtus ochrogaster): A mechanism for pair bonding? Behavioral Neuroscience, 113, 602–611.Google Scholar
  47. Winslow, J. T., Hastings, N., Carter, C. S., Harbaugh, C. R., Young, T. R., Li, J., et al. (1999). Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature, 100, 766–768.Google Scholar
  48. Wise, R. A. (1988). Psychomotor stimulant properties of addictive drugs. In P. W. Kalivas, & C. B. Nemeroff (Eds.), The mesocorticolimbic dopamine system (Vol. 537, pp. 228–234). New York: The New York Academy of Science.Google Scholar
  49. Wise, R. A. (1989). Brain dopamine and reward. Annual Review of Psychology, 40, 191–225.Google Scholar
  50. Wise, R. A. (1996). Neurobiology of addiction. Current Opinion in Neurobiology, 6, 243–251.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Helen E. Fisher
    • 1
  • Arthur Aron
    • 2
  • Debra Mashek
    • 2
  • Haifang Li
    • 3
  • Lucy L. Brown
    • 4
  1. 1.Department of AnthropologyRutgers UniversityNew Brunswick
  2. 2.Department of PsychologyState University of New York at Stony BrookStony Brook
  3. 3.Department of RadiologyState University of New York at Stony BrookStony Brook
  4. 4.Department of Neurology and NeuroscienceAlbert Einstein College of MedicineBronx

Personalised recommendations