Thyroid Cancer Following Exposure to Radioactive Iodine

  • Jacob Robbins
  • Arthur B. Schneider
thyroid cancer radioactive iodine Chernobyl epidemiology radiation-related 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dobyns BM, Sheline GE, Workman JB, Tompkins EA, McConahey WM, Becker DV. Malignant and benign neoplasms of the thyroid in patients treated for hyperthyroidism, A report of the Cooperative Thyrotoxicosis Therapy Study. J Clin Endocrinol Metab 1974;38:976-998.Google Scholar
  2. 2.
    Holm L-E, Hall P, Wiklund K, et al. Cancer risk after iodine-131 therapy for hyperthyroidism. J Natl Cancer Inst 1991;83:1072-1077.Google Scholar
  3. 3.
    Hall P, Berg G, Bjelkengren G, et al. Cancer mortality after iodine-131 therapy for hyperthyroidism. Int J Cancer 1992;50:886-890.Google Scholar
  4. 4.
    Hall P Lundell G, Holm L-E. Mortality in patients treated for hyperthyroidism with iodine-131. Acta Endocrinol 1993;128:230-234.Google Scholar
  5. 5.
    Ron E, Doddy MM, Becker DV, et al. Cancer mortality following treatment for adult hyperthyroidism. JAMA 1998;280:347-355.Google Scholar
  6. 6.
    Maxon HR, Saenger EL. Biological effects of radioiodines on the human thyroid gland. In: Braverman LE, Utiger R. eds Werner and Ingbar's The Thyroid. Philadelphia: Lippincott-Raven, 1996;343-351.Google Scholar
  7. 7.
    Franklyn JA, Maisonneuve P, Sheppard M, Bettendge J, Boyle P. Cancer incidence and mortality after radioiodine treatment for hyperthyroidism a population-based cohort study. Lancet 1993;353:2111-2115.Google Scholar
  8. 8.
    Shore RE. Issues and epidemiological evidence regarding radiation-induced thyroid cancer. Radiat Res 1992;131:98-111.Google Scholar
  9. 9.
    Ron E, Lubin JH, Shore RE, et al. Thyroid cancer after exposure to external radiation: A pooled analysis of seven studies. Radiat Res 1995;141:259-277.Google Scholar
  10. 10.
    Clark JD, Gelfand MJ, Elgazzar AH. Iodine-131 therapy of hyperthyroidism in pediatric patients. J Nucl Med 1995;36:442-445.Google Scholar
  11. 11.
    Hall P, Mattsson A, Boice JD Jr. Thyroid cancer after diagnostic administration of iodine-131. Radiat Res 1996;145:86-92.Google Scholar
  12. 12.
    Hall P, Furst CJ, Mattsson A, Holm L-E, Boice JD Jr. Inskip PD. Thyroid nodularity after diagnostic administration of iodine-131. Radiat Res 1996;146:673-682.Google Scholar
  13. 13.
    Dreicer M, Aarkog A, Alexakhin L, Anspaugh L, Arkhipov NP, Johansson K-J. Consequences of the Chernobyl Accident for the Natural and Human Environment. In: One Decade After Chernobyl Summing Up the Consequences of the Accident. Vienna: International Atomic Energy Agency, 1996;319-361.Google Scholar
  14. 14.
    Royal HD. The Three Mile Island and Chernobyl Reactor Accidents. In: Mettler FA, Jr. Kelsey CA, Ricks RC, eds Medical Management of Radiation Accidents. Boca Raton, FL: CRC Press, 1990;269-292.Google Scholar
  15. 15.
    Malone J, Unger J, Delange F, Lagasse R, Dumont JE. Thyroid consequences of Chernobyl accident in the countries of the European Community. J Endocrinol Invest 1991;14:701-717.Google Scholar
  16. 16.
    Straume T, Marchetti AA, Anspaugh LR, et al. The feasibility of using I-129 to reconstruct I-131 deposition from the Chernobyl reactor accident. Health Phys 1996;71:733-740.Google Scholar
  17. 17.
    Gavrilin YI, Khrouch VT, Shinkarev SM, et al. Chernobyl accident Reconstruction of thyroid dose for inhabitants of the Republic of Belarus. Health Phys 1999;76:105-119.Google Scholar
  18. 18.
    Brill AB, Stabin A, Bouville A, et al. Can the Chernobyl accident provide answers regarding the relative risk of 131I vs short-lived nuclides. In: Thomas G, Karaoglou A, Williams ED. eds. Radiation and Thyroid Cancer. Singapore: World Scientific, 1999;195-199.Google Scholar
  19. 19.
    Jacob P, Goulko G, Heidenreich WF, et al. Thyroid cancer risk to children calculated. Nature 1998;392:31-32.Google Scholar
  20. 20.
    Becker DV, Robbins J, Beebe GW, Bouville AC, Wachholz BW. Childhood thyroid cancer following the Chernobyl accident, A status report. Endocrinol Metab Clin North Am 1996;25:197-211.Google Scholar
  21. 21.
    Astakhova LN, Anspaugh LR, Beebe GW, et al. Chernobyl-related thyroid cancer in children of Belarus. A case-control study. Radiat Res 1998;150:349-356.Google Scholar
  22. 22.
    Minenko V, Shemyakina E, Drozdovitch V, et al. Estimation of individual thyroid doses received by the subjects of the cohort screened in the Belarusian-American study. In: Thomas G, Karaoglou A, Williams ED, eds Radiation and Thyroid Cancer. Singapore: World Scientific, 1999;309-318.Google Scholar
  23. 23.
    Gembicki M, Stozharov AN, Arinchin AN, et al. Iodine deficiency in Belarusian children as a possible factor stimulating the irradiation of the thyroid gland during the Chernobyl catastrophe. Environ Health Perspect 1997;105:1487-1490.Google Scholar
  24. 24.
    Wachholz BW. United States cooperation with Belarus and Ukraine in the development and implementation of scientific protocols of thyroid cancer and other thyroid disease following the Chernobyl accident. In: Nagataki S, ed Nagasaki Symposium on Chernobyl Update and Future. Amsterdam: Elsevier, 1994;145-148.Google Scholar
  25. 25.
    Karaoglou A, Desmet G, Kelly GN, Menzel HG. Proceedings of the First International Conference. The Radiological Consequences of the Chernobyl Accident Publication EUR 16544, Brussels: European Communities, 1996.Google Scholar
  26. 26.
    Schwenn MR, Brill AB. Childhood cancer 10 years after the Chernobyl accident. Curr Opinion Pediatr 1997;9:51-54.Google Scholar
  27. 27.
    Sobolev B, Heidenreich WF, Kairo I, Jacob KP, Goulko G, Likhtarev I. Thyroid cancer incidence in the Ukraine after the Chernobyl accident: comparison with spontaneous incidences. Radiat Environ Biophys 1997;36:195-199.Google Scholar
  28. 28.
    Karaoglou A, Chadwick KH. Health consequences of Chernobyl and other radiation accidents—Report on the European Union Cluster Contractors' workshop (San Miniato, Italy, 17-22 June 1997). Radiat Environ Biophys 1998;37:1-9.Google Scholar
  29. 29.
    Thomas G, Karaoglou A, Williams ED. Radiation and Thyroid Cancer. Singapore: World Scientific, 1999.Google Scholar
  30. 30.
    Williams ED, Tronko ND. Molecular, Cellular, Biological Characterization of Childhood Thyroid Cancer. International Scientific Collaboration on Consequences of Chernobyl Accident, Luxembourg: European Commission, 1996.Google Scholar
  31. 31.
    Robbins J. Characteristics of spontaneous and radiation induced thyroid cancers in children. In: Nagataki S, ed Nagasaki Symposium on Chernobyl Update and Future. Amsterdam: Elsevier, 1994;81-87.Google Scholar
  32. 32.
    Williams ED, Cherstvoy ED, Egloff B, et al. Interaction of Pathology and Molecular Characterization of Thyroid Cancers. In: Karaoglou A, Desmet G, Kelly GN, Menzel HG, eds The Radiological Consequences of the Chernobyl Accident. Proceedings of the First International Conference, Minsk, Belarus, March 18-22, 1996 Publication EUR 16544 EN, Luxembourg: European Commission, 1996;699-715.Google Scholar
  33. 33.
    Robbins J, Schneider AB. Radioiodine-induced thyroid cancer. Studies in the aftermath of the accident at Chernobyl. Trends Endocrinol Metab 1998;9:87-94.Google Scholar
  34. 34.
    Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H, Fagin JA. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res 1997;57:1690-1694.Google Scholar
  35. 35.
    Schneider AB, Ron E, Lubin J, Stovall M, Gierlowski TC. Doseresponse relationships for radiation-induced thyroid cancer and thyroid nodules. Evidence for the prolonged effects of radiation on the thyroid. J Clin Endocrinol Metab 1993;77:362-369.Google Scholar
  36. 36.
    Conard RA. Late radiation effects in Marshall Islanders exposed to fallout 28 years ago. In: Boice JD, Jr., Fraumeni JR, eds Radiation carcinogenesis. Epidemiology and biological significance, New York: Raven Press, 1984;57-71.Google Scholar
  37. 37.
    Robbins J, Adams WH. Radiation effects in the Marshall Islands. In: Nagataki S, ed. Radiation and the thyroid. Amsterdam: Excerpta Medica, 1989;11-24.Google Scholar
  38. 38.
    Lessard E, Miltenberger RP, Cohn SH, Musolino SV, Conard RA. Protracted exposure to fallout. The Rongelap and Utenk experience. Health Phys 1984;46:511-527.Google Scholar
  39. 39.
    Shipler DB, Napier BA, Farris WT, Freshley MD. Hanford environmental dose reconstruction project: an overview. Health Phys 1996;71:532-544.Google Scholar
  40. 40.
    Farris WT, Napier BA, Ikenberry TA, Shipler DB. Radiation doses from Hanford Site releases to the atmosphere and the Columbia River. Health Phys 1996;71:588-601.Google Scholar
  41. 41.
    Davis S, Kopecky KJ, Hamilton T, Amundson B, Myers PA. Summary Final Report of the Hanford Thyroid Disease Study. Seattle: Fred Hutchinson Cancer Research Center 1999.Google Scholar
  42. 42.
    National Cancer Institute. Estimated Exposures and Thyroid Doses Received by the American People From I-131 in Fallout Following Nevada Atmospheric Nuclear Bomb Tests Bethesda, MD: National Institutes of Health, 1997.Google Scholar
  43. 43.
    Kerber RA, Till JE, Simon SL, et al. A cohort study of thyroid disease in relation to fallout from nuclear weapons testing. JAMA 1993;270:2076-2082.Google Scholar
  44. 44.
    Till JE, Simon SL, Kerber R, et al. The Utah thyroid cohort study. Analysis of the dosimetry results. Health Phys 1995;68:472-483.Google Scholar
  45. 45.
    Rallison ML, Dobyns BM, Keating FR Jr., Rall JE, Tyler FH. Thyroid disease in children. A survey of subjects potentially exposed to fallout radiation. JAMA 1974;56:457-463.Google Scholar
  46. 46.
    Boice JD Jr., Land CE, Preston DL. Ionizing Radiation. In: Schottenfeld D, Fraumeni, Jr. JF, eds Cancer Epidemiology and Prevention. New York: Oxford University Press, 1996;319-354.Google Scholar
  47. 47.
    Schneider AB, Robbins J. Ionizing radiation and thyroid cancer. In: Fagin J, ed Thyroid Cancer. Boston, MA: Kluwer Academic Publishers, 1998;27-57.Google Scholar
  48. 48.
    Goldman M. The Russian radiation legacy: its integrated impact and lessons. Environ Health Perspect 1997;105 Suppl 6:1385-1391.Google Scholar
  49. 49.
    Becker DV, Zanzonico P. Potassium iodide for thyroid blockade in a reactor accident. Administrative policies that govern its use. Thyroid 1997;7:193-197.Google Scholar
  50. 50.
    Baverstock K. Guidelines for Iodine Prophylaxis Following Nuclear Accidents. World Health Organization, Geneva 1999.Google Scholar
  51. 51.
    Nauman J, Wolff J. Iodide prophylaxis in Poland after the Chernobyl reactor accident. Benefits and risks. Am J Med 1993;94:524-532.Google Scholar
  52. 52.
    Ezzat S, Sarti DA, Cain DR, Braunstein GD. Thyroid incidentalomas —Prevalence by palpation and ultrasonography. Arch Intern Med 1994;154:1838-1840.Google Scholar
  53. 53.
    Tan GH, Ghanb H, Reading CC. Solitary thyroid nodule— Comparison between palpation and ultrasonography. Arch Intern Med 1995;155:2418-2423.Google Scholar
  54. 54.
    Schneider AB, Bekerman C, Leland J, et al. Thyroid nodules in the follow-up of irradiated individuals. Comparison of thyroid ultrasound with scanning and palpation. J Clin Endocrinol Metab 1997;82:4020-4027.Google Scholar
  55. 55.
    National Research Council and Institute of Medicine. Exposure of the American People to Iodine-131 From Nevada Nuclear-bomb Tests. Review of the National Cancer Institute Report and Public Health Implications, Washington, DC: National Academy Press, 1999.Google Scholar
  56. 56.
    Gharib H, Mazzafern EL. Thyroxine suppressive therapy in patients with nodular thyroid disease. Ann Intern Med 1998;128:386-394.Google Scholar
  57. 57.
    Schneider AB. Cancer therapy and endocrine disease: Radiationinduced thyroid tumours. In: Sheaves R, Jenkins PJ, Wass JA, eds. Clinical endocrine oncology. Oxford: Blackwell Science, 1997;514-517.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Jacob Robbins
    • 1
    • 2
  • Arthur B. Schneider
    • 1
    • 2
  1. 1.Genetics and Biochemistry BranchNIH, NIDDKBethesda
  2. 2.Section of Endocrinology and MetabolismUniversity of Illinois at ChicagoChicago

Personalised recommendations