Advertisement

Transgenic Research

, Volume 9, Issue 3, pp 215–222 | Cite as

Production of biologically active human granulocyte colony stimulating factor in the milk of transgenic goat

  • Jung Ho Ko
  • Chul-Sang Lee
  • Kui Hyun Kim
  • Myung-Geol Pang
  • Ja Shin Koo
  • Nanzhu Fang
  • Deog-Bon Koo
  • Keon Bong Oh
  • Woo-Sik Youn
  • Guo Dong Zheng
  • Jung Sun Park
  • Sun Jung Kim
  • Yong-Mahn Han
  • In Young Choi
  • Joonho Lim
  • Sang Tae Shin
  • Seung Won Jin
  • Kyung-Kwang Lee
  • Ook Joon Yoo
Article

Abstract

We have developed a transgenic female goat harboring goat beta-casein promoter/human granulocyte colony stimulating factor (G-CSF) fusion gene by microinjection into fertilized one-cell goat zygotes. Human G-CSF was produced at levels of up to 50 μ g/ml in transgenic goat milk. Its biological activity was equivalent to recombinant human G-CSF expressed from Chinese hamster ovary (CHO) cell when assayed using in vitro HL-60 cell proliferation. Human G-CSF from transgenic goat milk increased the total number of white blood cells in C57BL/6N mice with leucopenia induced by cyclophosphamide (CPA). The secreted human G-CSF was glycosylated although the degree of O-glycosylation was lower compared to CHO cell-derived human G-CSF.

biological activity bioreactor G-CSF O-glycosylation transgenic goat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguirre A, Castro-Palomino N, De la Fuente J and Ovidio Castro FO (1998) Expression of human erythropoietin transgenes and of the endogenous WAP gene in the mammary gland of transgenic rabbits during gestation and lactation. Transgenic Res 7: 311–317.Google Scholar
  2. Carver AS, Dalrymple MA, Wright G, Cottom DS, Reeves DB, Gibson YH, Keenan JL, Barrass JD, Scott AR and Colman A (1993) Transgenic livestock as bioreactors: stable expression of human alpha-1-antitrypsin by a flock of sheep. Biotechnology (NY) 11: 1263–1270.Google Scholar
  3. Denman J, Hayes M, O'Day C, Edmunds T, Bartlett C, Hirani S, Ebert KM, Gordon K and McPherson JM (1991) Transgenic expression of a variant of human tissue-type plasminogen activator in goat milk: purification and characterization of the recombinant enzyme. Biotechnology (NY) 9: 839–843.Google Scholar
  4. Doppler W, Groner B and Ball RK (1989) Prolactin and glucocorticoid hormones synergistically induce expression of transfected rat beta-casein gene promoter constructs in a mammary epithelial cell line. Proc. Natl. Acad. Sci. USA 86: 104–108.Google Scholar
  5. Edmunds T, Van Patten SM, Pollock J, Hanson E, Bernasconi R, Higgins E, Manavalan P, Ziomek C, Meade H, McPherson JM and Cole ES (1998) Transgenically produced human antithrombin: structural and functional comparison to human plasma-derived antithrombin. Blood 91: 4561–4571.Google Scholar
  6. Frampton JE, Lee CR and Faulds D (1994) Filgrastim a review of its pharmacological properties and therapeutic efficacy in neutropenia. Drugs 48: 731–760.Google Scholar
  7. Gutierrez A, Meade HM, Ditullio P, Pollock D, Harvey M, Jimenez-Flores R, Anderson GB, Murray JD and Medrano JF (1996) Expression of a bovine κ-CN cDNA in the mammary gland of transgenic mice utilizing a genomic milk protein gene as an expression cassette. Transgenic Res 5: 271–279.Google Scholar
  8. Hattori K, Shimizu K, Takahashi M, Tamura M, Oheda M, Ohsawa N and Ono M (1990) Quantitative in vivo assay of human granulocyte colony-stimulating factor using cyclophosphamide-induced neutropenic mice. Blood 75: 1228–1233.Google Scholar
  9. Hoglund M (1998) Glycosylated and non-glycosylated recombinant human granulocyte colony-stimulating factor(rhG-CSF) – what is the difference? Med Oncol 15: 229–233.Google Scholar
  10. Korhonen VP, Tolvanen M, Hyttinen JM, Unsi-Oukari M, Sinervirta R, Alhonen L, Jauhiainen M, Janne OA and Janne J (1997) Expression of bovine beta-lactoglobulin/human erythropoietin fusion protein in the milk of transgenic mice and rabbits. Eur J Biochem 245: 482–489.Google Scholar
  11. Kubota N, Orita T, Hattori K, Oheda M, Ochi N and Yamazaki T (1990) Structural characterization of natural and recombinant human granulocyte colony-stimulating factors. J Biochem 107: 486–492.Google Scholar
  12. Lee CS, Fang NZ, Koo DB, Lee YS, Zheng GD, Oh KB, Youn WS, Han YM, Kim SJ, Lim JH, Shin ST, Jin SW, Lee KS, Ko JH, Koo JS, Park CS, Lee KS, Yoo OJ and Lee KK Embryo recovery and transfer for the production of transgenic goats from Korean native strain, Capra hircus aegagrus. Small Ruminant Res In press.Google Scholar
  13. Lubon H (1998) Transgenic animal bioreactors in biotechnology and production of blood proteins. Biotech Annu Rev 4: 1–54.Google Scholar
  14. Metcalf D (1988) The molecular control of blood cells. Harvard University Press, London, UK.Google Scholar
  15. Morstyn G and Burgess AW (1988) Hemopoietic growth factors: A review. Cancer Res 48: 5624–5637.Google Scholar
  16. Nagata S, Tsuchuya M, Asano S, Kaziro Y, Yamazaki T, Yamamoto O, Hirata Y, Kubota N, Oheda M, Nomura H and Ono M (1986) Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor. Nature 319: 415–418.Google Scholar
  17. Nicola NA, Metcalf D, Matsumoto M and Johnson GR (1983) Purification of a factor inducing differentiation in murine myelomonocytic leukemia cells. J Biol Chem 258: 9017–9023.Google Scholar
  18. Niemann H, Halter R, Carnwath JW, Herrmann D, Lemme E and Paul D (1999) Expression of human blood clotting factor VIII in the mammary gland of transgenic sheep. Transgenic Res 8: 237–247.Google Scholar
  19. Nohynek GJ, Plard JP, Wells MY, Zerial A and Roquet F (1997) Comparison of the potency of glycosylated and non-glycosylated recombinant human granulocyte colony-stimulating factors in neutropenic and non-neutropenic CD rats. Cancer Chemother Pharmacol 39: 259–266.Google Scholar
  20. Nomura H, Imazeki I, Oheda M, Kubota N, Tamura M, Ono M, Ueyama Y and Asano S (1986) Purification and characterization of human granulocyte colony-stimulating factor (G-CSF). EMBO J 5: 871–876.Google Scholar
  21. Prunkard D, Cottingham I, Garner I, Bruce S, Dalrymple M, Lasser G, Bishop P and Foster D (1996) High-level expression of recombinant human fibrinogen in the milk of transgenic mice. Nat Biotechnol 14: 867–871.Google Scholar
  22. Roberts BT, Ditullio P, Vitale J, Hehir K and Gordon K (1992) Cloning of the goat beta-casein-encoding gene and expression in transgenic mice. Gene 121: 255–262.Google Scholar
  23. Sambrook J, Fritsch EF and Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd edn, Cold Spring Harbor, New York, USA.Google Scholar
  24. Simons JP, McClenaghan M and Clark AJ (1987) Alteration of the quality of milk by expression of sheep beta-lactoglobulin in transgenic mice. Nature 328: 530–532.Google Scholar
  25. Souza LM, Boone TC, Gabrilove J, Lai PH, Zsebo KM, Murdock DC, Chazin VR, Bruszewski J, Lu H, Chen KK, Barendt J, Platzer E, Moore MSA, Mertelsmann R and Welte K (1986) Recombinant human granulocyte colony-stimulating factor: Effects on normal and leukemic myeloid cells. Science 232: 61–65.Google Scholar
  26. Stromqvist M, Tornell J, Edlund M, Edlund A, Johansson T, Lindgren K, Lundberg L and Hansson L (1996) Recombinant human bile salt-stimulated lipase: an example of defective Oglycosylation of a protein produced in milk of transgenic mice. Transgenic Res 5: 475–485.Google Scholar
  27. Uusi-Oukari M, Hyttinen JM, Korhonen VP, Vasti A, Alhonen L, Janne OA and Janne J (1997) Bovine αs1-casein gene sequences direct high level expression of human granulocyte-macrophage colony-stimulating factor in the milk of transgenic mice. Transgenic Res 6: 75–84.Google Scholar
  28. Welte K, Gabrilove J, Bronchud MH, Platzer E and Morstyn G (1996) Filgrastim (r-metHuG-CSF): the first 10 years. Blood 88: 1907–1929.Google Scholar
  29. Wilkins TD and Velander W (1992) Isolation of recombinant proteins from milk. J Cell Biochem 49: 333–338.Google Scholar
  30. Yamaguchi T, Yamaguchi T, Kogi M, Yamamoto Y and Hayakawa T (1997) Bioassay of human granulocyte colony-stimulating factor using human promyelocytic HL-60 cells. Biol Pharm Bull 20: 943–947.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Jung Ho Ko
    • 1
  • Chul-Sang Lee
    • 2
  • Kui Hyun Kim
    • 3
  • Myung-Geol Pang
    • 3
  • Ja Shin Koo
    • 1
  • Nanzhu Fang
    • 2
    • 4
  • Deog-Bon Koo
    • 2
  • Keon Bong Oh
    • 2
  • Woo-Sik Youn
    • 2
  • Guo Dong Zheng
    • 2
    • 5
  • Jung Sun Park
    • 2
  • Sun Jung Kim
    • 2
  • Yong-Mahn Han
    • 2
  • In Young Choi
    • 6
  • Joonho Lim
    • 7
  • Sang Tae Shin
    • 7
  • Seung Won Jin
    • 6
  • Kyung-Kwang Lee
    • 2
  • Ook Joon Yoo
    • 1
    • 3
  1. 1.Department of Biological Sciences, Korea Advanced Institute of Science and TechnologyTaejonKorea
  2. 2.Korea Research Institute of Bioscience and BiotechnologyTaejonKorea
  3. 3.BioMedical Research Center, Korea Advanced Institute of Science and TechnologyTaejonKorea
  4. 4.Department of Animal Science, College of AgricultureYanbian UniversityChina
  5. 5.Department of Anatomy, College of MedicineYanbian UniversityChina
  6. 6.Central Research Institute, Hanmi Pharmaceutical Company, Ltd.Sungnam, Kyunggi-doKorea
  7. 7.College of Veterinary MedicineChungnam National UniversityTaejonKorea

Personalised recommendations