Celestial Mechanics and Dynamical Astronomy

, Volume 74, Issue 2, pp 111–146 | Cite as

Chaos and secondary resonances in the mimas–tethys system

  • S. Champenois
  • A. Vienne


We have investigated the role of the 200 yr period discovered by Vienne and Duriez (1992) on the tidal evolution of the Mimas–Tethys system through the 2:4 ii′ present resonance. Three terms are found to generate this period. We present a perturbed‐pendulum model in which these terms bring about a perturbation to the ideal ii′ resonance pendulum, which is in a direct ratio to the eccentricity e′ of Tethys. Although e′ is now very small, it is shown that this quantity could have been much greater in the past. We also show, thanks to this model, that these terms may have brought about a stochastic layer of noticeable width at the time of capture in the ii′ resonance, with the consequence that the possible values of the inclination i of Mimas before capture range from 0.4° to 0.6° (these uncertainties arise from the present uncertainties on e′). The role of each one of the three terms is examined in the appearance of chaos. A capture into the 1/1 secondary resonance (between the libration period of the primary ii′ resonance and the period of about 200 yr) is found possible. It means that the system could have experienced several captures in the primary resonance, instead of a single one, and that i could have been, with this assumption, much lower than 0.4°. A probability of capture into this secondary resonance as a function of the eccentricity of Tethys on encounter is derived, using Malhotra's method (Malhotra, 1990). Allan's values of i = 0.42° and e′ ≈ 0 (Allan, 1969) are therefore called into question, and taking e′ ≠ 0 is shown to be absolutely necessary if we want to understand the phenomena at work in the Mimas–Tethys system.

Mimas–Tethys system chaos secondary resonances tides capture probability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan, R. R.: 1969, ‘Evolution of Mimas-Tethys commensurability’, Astron. J. 74 497-506.Google Scholar
  2. Banfield, D. and Murray N.: 1992, ‘A dynamical history of the inner neptunian satellites’, Icarus 99, 390-401.Google Scholar
  3. Bruhwiler, D. L. and Cary, J. R.: 1989, ‘Diffusion of particles in a slowly modulated wave’, Physica D 40, 265.Google Scholar
  4. Brouwer, D. and Clemence, G. M.: 1960, Methods of Celestial Mechanics, Academic Press, New York, U.S.A.Google Scholar
  5. Campbell, J. K. and Anderson, J. D.: 1989, ‘Gravity field of the saturnian system from pioneer and voyager tracking data’, Astron. J. 97, 1485-1495.Google Scholar
  6. Champenois, S.: 1998, Dynamique de la résonance entre Mimas et Téthys, premier et troisième satellites de Saturne, Thèse, Observatoire de Paris.Google Scholar
  7. Champenois, S. and Vienne, A.: 1999, 'The role of secondary resonances in the evolution of the Mimas-Tethys system, Icarus, accepted.Google Scholar
  8. Chirikov, B. V.: 1979, ‘A universal instability of many-dimensional oscillator systems’, Phys. Reports 52 263-379.Google Scholar
  9. Chyba, C. F., Jankowski, D. G. Nicholson, P. D.: 1989, ‘Tidal evolution in the Neptune-Triton system’, Astron. Astrophys. 219, L23-26.Google Scholar
  10. Dermott, S. F., Malhotra, R. and Murray, C. D.: 1988, ‘Dynamics of the uranian and saturnian systems: A chaotic route to melting miranda?’, Icarus 76, 295-334.Google Scholar
  11. Duriez, L.: 1989, ‘Le developpement de la fonction perturbatrice’, In: D. Benest and C. Froeschle (eds), Les Methodes Modernes de la Mecanique Celeste, Goutelas, pp. 35-62.Google Scholar
  12. Gavrilov, S. V. and Zharkov, V. N.: 1977, ‘Love numbers of the giant planets’, Icarus 32, 443-449.Google Scholar
  13. Henrard, J.: 1982, ‘The Adiabatic Invariant: its use in celestial mechanics’, In: V. Szebehely (ed.), Applications of Modern Dynamics to Celestial Mechanics, Reidel, pp. 153-171.Google Scholar
  14. Henrard, J. and Lemaître, A.: 1983, ‘A second fundamental model for resonance’, Celest. Mech. 30, 197-218.Google Scholar
  15. Henrard, J. and Vleeschauwer, A. de: 1988, ‘Sweeping through a second order resonance’, Celest. Mech. 43, 99-112.Google Scholar
  16. Kaula, W. M.: 1964, ‘Tidal dissipation by solid friction and the resulting orbital evolution’, Rev. Geophys. Space Phys. 2, 467-539.Google Scholar
  17. Landau, L.D. and Lifchitz, E.M.: 1960, Mecanique, Editions en Langues Etrangeres, Moscou URSS.Google Scholar
  18. Laskar, J.: 1990, ‘The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones’, Icarus 88, 266-291.Google Scholar
  19. Malhotra, R.: 1988, Some aspects of the dynamics of the orbit-orbit resonances in the uranian satellite system, PhD Thesis, Cornell University.Google Scholar
  20. Malhotra, R.: 1990, ‘Capture probabilities for secondary resonances’, Icarus 87, 249-264.Google Scholar
  21. Malhotra, R.: 1991, ‘Tidal origin of the Laplace resonance and the resurfacing of ganymede’, Icarus 94, 399-412.Google Scholar
  22. Malhotra, R. and Dermott, S. F.: 1990, ‘The role of secondary resonances in the orbital history of Miranda’, Icarus 85, 440-480.Google Scholar
  23. Morbidelli, A.: 1994, ‘Resonant structure and diffusion in Hamiltonian systems’, In: D. Benest and C. Froeschlé (eds), Chaos and Diffusion in Hamiltonian Systems, Editions Frontières, pp. 65-112.Google Scholar
  24. Sinclair, A. T.: 1972, ‘On the origin of the commensurabilities amongst the satellites of Saturn’, Mon. Not. R. Astron. Soc. 160, 169-187.Google Scholar
  25. Vienne, A. and Duriez, L.: 1992, ‘A general theory of motion for the eight major satellites of Saturn’, Astron. Astrophys. 257, 331-352.Google Scholar
  26. Vienne, A. and Duriez, L.: 1995, ‘TASS1.6: ephemerides of the major saturnian satellites’, Astron. Astrophys. 297, 588-605Google Scholar
  27. Wisdom, J. and Holman, M.: 1992, ‘Symplectic maps for the N-body problem: stability analysis’, A.J. 104, 2022-2029.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • S. Champenois
    • 1
  • A. Vienne
    • 1
  1. 1.Laboratoire d'AstronomieUniversité Lille1, BdLLilleFrance, E‐mail

Personalised recommendations