Plant Molecular Biology

, Volume 43, Issue 5–6, pp 773–786 | Cite as

Cell cycle regulation in the course of nodule organogenesis in Medicago

  • Fabrice Foucher
  • Eva Kondorosi


The molecular mechanisms of de novo meristem formation, cell differentiation and the integration of the cell cycle machinery into appropriate stages of the developmental programmes are still largely unknown in plants. Legume root nodules, which house nitrogen-fixing rhizobia, are unique plant organs and their development may serve as a model for organogenetic processes in plants. Nodules form and are essential for the plant only under limitation of combined nitrogen in the soil. Moreover, their development is triggered by external mitogenic signals produced by their symbiotic partners, the rhizobia. These signals, the lipochitooligosaccharide Nod factors, act as host-specific morphogens and induce the re-entry of root cortical cells into mitotic cycles. Maintenance of cell division activity leads to the formation of a persistent nodule meristem from which cells exit continuously and enter the nodule differentiation programme, involving multiple cycles of endoreduplication and enlargement of nuclear and cell volumes. While the small diploid 2C cells remain uninfected, the large polyploid cells can be invaded and, after completing the differentiation programme, host the nitrogen-fixing bacteroids. This review summarizes the present knowledge on cell cycle reactivation and meristem formation in response to Nod factors and reports on a novel plant cell cycle regulator that can switch mitotic cycles to differentiation programmes.

cell cycle de novo meristem differentiation endoreduplication Nod factor nodule organogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ardourel, M., Demont, N., Debelle, F.D., Maillet, F., de Billy, F., Prome, J.C., Denarie, J. and Truchet, G. 1994. Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell 6: 1357–1374.PubMedGoogle Scholar
  2. Asad, S., Fang, Y.W., Wycoff, K.L. and Hirsch, A.M. 1994. Isolation and characterization of cDNA and genomic clones of MsENOD40; transcripts are detected in meristematic cells of alfalfa. Protoplasma 183: 10–23.Google Scholar
  3. Bartik, J., Bartkova, J. and Lukas, J. 1996. The retinoblastoma protein pathway and the restriction point. Curr. Opin. Cell Biol. 8: 805–814.PubMedGoogle Scholar
  4. Bauer, P., Ratet, P., Crespi, M.D., Schultze, M. and Kondorosi, A. 1996. Nod factors and cytokinins induce similar cortical cell division, amyloplast deposition and MsEnod12A expression patterns in alfalfa roots. Plant J. 10: 91–105.Google Scholar
  5. Bono, J.J., Riond, J., Nicolaou, K.C., Bockovich, N.J., Estevez, V.A., Cullimore, J.V. and Ranjeva, R. 1995. Characterization of a binding site for chemically synthesized lipo-oligosaccharidic NodRm factors in particulate fractions prepared from roots. Plant J. 7: 253–260.PubMedGoogle Scholar
  6. Brewin, N.J. 1998. Tissue and cell invasion by Rhizobium: the structure and development of infection threads and symbiosomes. In: H.P. Spaink, A. Kondorosi and P. Hooykaas (Eds.) The Rhizobiaceae, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 417–429.Google Scholar
  7. Caetano-Anolles, G., Joshi, P.A. and Gresshoff, P.M. 1993. Nodule morphogenesis in the absence of Rhizobium. In: R. Palacios, J. Mora and W.E. Newton (Eds.) New Horizons in Nitrogen Fixation, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 297–302.Google Scholar
  8. Capella, D., Barloy-Hubler, F., Gatius, M.T., Gouzy, J. and Galibert, F. 1999. A high density physical map of Sinorhizobium meliloti 1021 chromosome derived from bacterial artificial chromosome library. Proc. Natl. Acad. Sci. USA 96: 9357–9362.PubMedGoogle Scholar
  9. Cebolla, A., Vinardell, J.M., Kiss, E., Olah, B., Roudier, F., Kondorosi, A. and Kondorosi, E. 1999. The mitotic inhibitor ccs52 is required for endoreplication and ploidy-dependent cell enlargement in plants. EMBO J. 18: 4476–4484.PubMedGoogle Scholar
  10. Charon, C., Johansson, C., Kondorosi, E., Kondorosi, A. and Crespi, M. 1997. enod40 induces dedifferentiation and division of root cortical cells in legumes. Proc. Natl. Acad. Sci. USA 94: 8901–8906.PubMedGoogle Scholar
  11. Charon, C., Sousa, C., Crespi, M. and Kondorosi, A. 1999. Alteration of enod40 expression modifies Medicago truncatula root nodule development induced by Sinorhizobium meliloti. Plant Cell 11: 1953–1965.PubMedGoogle Scholar
  12. Cooper, J.B. and Long, S.R. 1994. Morphogenetic rescue of Rhizobium meliloti nodulation mutants by trans-zeatin secretion. Plant Cell 6: 215–225.CrossRefPubMedGoogle Scholar
  13. Covitz, P.A., Smith, L.S. and Long, S.R. 1998. Expressed sequence tags from a root-hair-enriched Medicago truncatula cDNA library. Plant Physiol. 117: 1325–1332.CrossRefPubMedGoogle Scholar
  14. Crespi, M.D., Jurkevitch, E., Poiret, M., D'Aubenton-Carafa, Y., Petrovics, G., Kondorosi, E. and Kondorosi, A. 1994. enod40, a gene expressed during nodule organogenesis, codes for a nontranslatable RNA involved in plant growth. EMBO J. 13: 5099–5112.PubMedGoogle Scholar
  15. Dahl, M., Meskiene, I., Bogre, L., Ha, D.T., Swoboda, I., Hubmann, R., Hirt, H. and Heberle-Bors, E. 1995. The D-type alfalfa cyclin gene cycMs4 complements G1 cyclin-deficient yeast and is induced in the G1 phase of the cell cycle. Plant Cell 7: 1847–1857.CrossRefPubMedGoogle Scholar
  16. Dehio, C. and de Bruijn, F.J. 1992. The early nodulin gene SrEnod2 from Sesbania rostrata is inducible by cytokinin. Plant J. 2: 117–128.PubMedGoogle Scholar
  17. De la Pena T.C., Frugier, F., McKhann, H.I., Bauer, P., Brown, S., Kondorosi, A. and Crespi, M. 1997. A carbonic anhydrase gene is induced in the nodule primordium and its cell-specific expression is controlled by the presence of Rhizobium during development. Plant J. 11: 407–420.PubMedGoogle Scholar
  18. Downie, J.A. 1998. Functions of rhizobial nodulation genes. In: H.P. Spaink, A. Kondorosi and P. Hooykaas (Eds.) The Rhizobiaceae, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 387–402.Google Scholar
  19. Ehrhardt, D.W., Atkinson, E.M. and Long, S.R. 1992. Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science 256: 998–1000.PubMedGoogle Scholar
  20. Ehrhardt, D.W., Wais, R. and Long, S.R. 1996. Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell 85: 673–681.PubMedGoogle Scholar
  21. Fang, G., Hongtao, Y. and Kirschner, M.W. 1998. Direct binding of CDC20 protein family members activates the anaphasepromoting complex in mitosis and G1. Mol. Cell 2: 163–171.PubMedGoogle Scholar
  22. Fang, Y. and Hirsch, A. 1998. Studying early nodulin gene ENOD40 expression and induction by nodulation factor and cytokinin in transgenic alfalfa. Plant Physiol. 116: 53–68.PubMedGoogle Scholar
  23. Felle, H.H., Kondorosi, E., Kondorosi, A. and Schultze, M. 1995. Nod signal-induced plasma membrane potential changes in alfalfa root hairs are differentially sensitive to structural modifications of the lipochitooligosaccharide. Plant J. 7: 939–947.Google Scholar
  24. Felle, H.H., Kondorosi, E., Kondorosi, A. and Schultze, M. 1996. Rapid alkalinization in alfalfa root hairs in response to rhizobial lipochitooligosaccharide signals. Plant J. 10: 295–301.Google Scholar
  25. Felle, H.H., Kondorosi, E., Kondorosi, A. and Schultze, M. 1998. The role of ion fluxes in Nod factor signalling in Medicago sativa. Plant J. 13: 455–463.Google Scholar
  26. Fernandez-Lopez, M., Goormachtig, S., Gao, M.S., Dhaeze, W., Van Montagu, M. and Holsters, M. 1998. Ethylene-mediated phenotypic plasticity in root nodule development on Sesbania rostrata. Proc. Natl. Acad. Sci. USA 95: 12724–12728.PubMedGoogle Scholar
  27. Fountain, M., Murray, J. and Beck, E. 1999. Nucleotide sequence of a cDNA encoding a cyclin D3 protein (Accession No AJ011776) from suspension cultured photoautotrophic Chenopodium rubrum L. cells. Plant Physiol. 119: 363.PubMedGoogle Scholar
  28. Freiberg, C., Fellay, R., Bairoch, A., Broughton, W.J., Rosenthal, A. and Perret, X. 1997. Molecular basis of symbiosis between Rhizobium and legumes. Nature 387: 394–401.PubMedGoogle Scholar
  29. Goodlass, G. and Smith, K.A. 1979. Effect of ethylene on root extension and nodulation of pea (Pisum sativum L.) and white clover (Trifolium repens L.). Plant Soil 51: 387–395.Google Scholar
  30. Goormachtig, S., Mergaert, P., Van Montagu, M. and Holsters, M. 1998. The symbiotic interaction between Azorhizobium caulinodans and Sesbania rostrata: molecular cross-talk in a beneficial plant-bacterium interaction. In: Subcellular Biochemistry vol. 28: Plant-Microbe Interaction, Press Biwas and Das, New York, pp. 117–164.Google Scholar
  31. Grafi, G., Burnett, R.J., Helentjaris, T., Larkins, B.A., DeCaprio, J.A., Sellers, W.R. and Kaelin, W. Jr. 1996. A maize cDNA encoding a member of the retinoblastoma protein family: involvement in endoreduplication. Proc. Natl. Acad. Sci. USA 93: 8962–8967.Google Scholar
  32. Gresshoff, P. and Mohapatra, S. 1981. Legume cell and tissue culture. In: Tissue Culture of Economically Important Crop Plants, Press SU, Singapore, pp. 11–24.Google Scholar
  33. Grobbelaar, N., Clarke, B. and Hough, M.C. 1971. The nodulation and nitrogen fixation of isolated roots of Phaseolus vulgaris L. III. The effect of carbon dioxide and ethylene. Plant Soil, special volume: 215–223.Google Scholar
  34. Gutierrez, C. 1998. The retinoblastoma pathway in plant cell cycle and development. Curr. Opin. Plant Biol. 1: 492–497.PubMedGoogle Scholar
  35. Hagen, G., Martin, G., Li, Y. and Guilfoyle, T.J. 1991. Auxininduced expression of the soybean GH3 promoter in transgenic tobacco plants. Plant Mol. Biol. 17: 567–579.PubMedGoogle Scholar
  36. Heidstra, R., Yang, W.C., Yalcin, Y., Peck, S., Emons, A.M., van Kammen, A. and Bisseling, T. 1997. Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction. Development 124: 1781–1787.PubMedGoogle Scholar
  37. Hemerly, A.S., Ferreira, P., de Almeida Engler, J., Van Montagu, M., Engler, G. and Inzé, D. 1993. cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell 5: 1711–1723.CrossRefPubMedGoogle Scholar
  38. Hirsch, A.M. 1992. Developmental biology of legume nodulation. New Phytol. 122: 211–237.Google Scholar
  39. Hirsch, A.M. and LaRue, T.A. 1997. Is the legume nodule a modi-fied root or stem or an organ sui generis? Crit. Rev. Plant Sci. 16: 361–392.Google Scholar
  40. Jelenska, J., Deckert, J., Kondorosi, E., Legocki, A.B. 2000. Mitotic B-type cyclins are differentially regulated by phytohormones and during yellow lupine nodule development. Plant Science 150: 29–39.Google Scholar
  41. Kim, Y.S., Yoon, G.M., Cho, H.S., Park, S.H. and Pai, H.S. 1998. Chrk1 receptor-like kinase contains a chitinase-related sequence in its extracellular domain, which has a specific binding activity for chitin molecules. In: 4th Korea-Germany Joint Symposium in Plant Biotechnology, pp. 99–100.Google Scholar
  42. Kitumara, K., Maekawa, H. and Shimoda, C. 1998. Fission yeast Ste9, a homolog of HctI/CdhI and fizzy-related, is a novel negative regulator of cell cycle progression during G1-phase. Mol. Biol. Cell 9: 1065–1080.PubMedGoogle Scholar
  43. Kouchi, H. and Hata, S. 1993. Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol. Gen. Genet. 238: 106–119.PubMedGoogle Scholar
  44. Lee, K.H. and LaRue, T.A. 1992. Exogenous ethylene inhibits nodulation of Pisum sativum L. cv. Sparkle. Plant Physiol. 100: 1759–1763.Google Scholar
  45. Lerouge, P., Roche, P., Faucher, C., Maillet, F., Truchet, G., Prome, J.C. and Denarie, J. 1990. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344: 781–784.CrossRefPubMedGoogle Scholar
  46. Libbenga, K.R., van Iren, F., Bogers, R.J. and Schraag-Lamers, M.F. 1973. The role of hormones and gradients in the initiation of cortex proliferation and nodule formation in Pisum sativum L. Planta 114: 29–39.Google Scholar
  47. Lorca, T., Castro, A., Martinez, A.M., Vigneron, S., Morin, N., Sigrist, S., Lehner, C., Doree, M. and Labbe, J.C. 1998. Fizzy is required for activation of the APC/cyclosome in Xenopus egg extracts. EMBO J. 17: 3565–3575.PubMedGoogle Scholar
  48. Martinez-Romero, E. and Caballero-Mellado, J. 1996. Rhizobium phylogenies and bacterial genetic diversity. Crit. Rev. Plant Sci. 15: 113–140.Google Scholar
  49. Matvienko, M., van de Sande, K., Yang, W.C., van Kammen, A., Bisseling, T. and Franssen, H. 1994. Comparison of soybean and pea ENOD40 cDNA clones representing genes expressed during both early and late stages of nodule development. Plant Mol. Biol. 26: 487–493.PubMedGoogle Scholar
  50. McKhann, H.I., Frugier, F., Petrovics, G., De la Pena, T.C., Jurkevitch, E., Brown, S., Kondorosi, E., Kondorosi, A. and Crespi, M. 1997. Cloning of a WD-repeat-containing gene from alfalfa (Medicago sativa): a role in hormone-mediated cell division? Plant Mol. Biol. 34: 771–780.PubMedGoogle Scholar
  51. Meskiene, I., Bögre, L., Dahl, M., Pirck, M., Thi Cam Ha, D., Swoboda, I., Heberle-Bors, E., Ammerer, G. and Hirt, H. 1995. cycMs3, a novel B-type alfalfa cyclin gene, is induced in the G0-to-G1 transition of the cell cycle. Plant Cell 7: 759–771.CrossRefPubMedGoogle Scholar
  52. Mulligan, J.T. and Long, S.R. 1985. Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD. Proc. Natl. Acad. Sci. USA 82: 6609–6613.PubMedGoogle Scholar
  53. Nakagami, H., Sekine, M., Murakami, H. and Shinmyo, A. 1999. Tobacco retinoblastoma-related protein phosphorylated by a distinct cyclin-dependent kinase complex with Cdc2/cyclinD in vitro. Plant J. 18: 243–252.PubMedGoogle Scholar
  54. Neer, E.J., Schmidt, C.J., Nambudripad, R. and Smith, T.F. 1994. The ancient regulatory-protein family of WD-repeat proteins. Nature 371: 297–300.CrossRefPubMedGoogle Scholar
  55. Niebel, A., Bono, J.J., Ranjeva, R. and Cullimore, J.V. 1997. Identification of a high affinity binding site for lipo-oligosaccharidic NodRm factors in the microsomal fraction of Medicago cell suspension cultures. Mol. Plant-Microbe Interact. 10: 132–134.Google Scholar
  56. Papadopoulou, K., Roussis, A. and Katinakis, P. 1996. Phaseolus ENOD40 is involved in symbiotic and non-symbiotic organogenetic processes: expression during nodule and lateral root development. Plant Mol. Biol. 30: 403–417.CrossRefPubMedGoogle Scholar
  57. Penmetsa, R.V. and Cook, D.R. 1997. A legume ethyleneinsensitive mutant hyperinfected by its rhizobial symbiont. Science 275: 527–530.CrossRefPubMedGoogle Scholar
  58. Peters, N.K. and Crist-Estes, D.K. 1989. Nodule formation is stimulated by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol. 91: 690–693.Google Scholar
  59. Pingret, J.L., Journet, E.P. and Barker, D.G. 1998. Rhizobium Nod factor signaling: evidence for a G protein-mediated transduction mechanism. Plant Cell 10: 659–671.CrossRefPubMedGoogle Scholar
  60. Prinz, S., Hwang, E.S., Visitin, R. and Amon, A. 1998. The regulation of Cdc20 proteolysis reveals a role for the APC components Cdc23 and Cdc27 during S phase and early mitosis. Curr. Biol. 8: 750–760.PubMedGoogle Scholar
  61. Reed, S.I. 1997. Control of the G1/S transition. In: Checkpoint Controls and Cancer 29, Fund ICR, pp. 7–23.Google Scholar
  62. Relic, B., Talmont, F., Kopcinska, J., Golinowski, W., Prome, J.C. and Broughton, W.J. 1993. Biological activity of Rhizobium sp. NGR234 Nod-factors on Macroptilium atropurpureum. Mol. Plant-Microbe Interact. 6: 764–774.PubMedGoogle Scholar
  63. Renaudin, J.P., Doonan, J.H., Freeman, D., Hashimoto, J., Hirt, H., Inzé, D., Jacobs, T., Kouchi, H., Rouze, P., Sauter, M., Savouré, A., Sorrell, D.A., Sundaresan, V. and Murray, J.A. 1996. Plant cyclins: a unified nomenclature for plant A-, B-and D-type cyclins based on sequence organization. Plant Mol. Biol. 32: 1003–1018.PubMedGoogle Scholar
  64. Renz, A., Fountain, M. and Beck, E. 1997. Nucleotide sequence of a cDNA encoding a D-type cyclin (Accession No. Y10162) from a photoautotrophic cell suspension culture of Chenopodium rubrum L. Plant Physiol. 113: 1004.Google Scholar
  65. Roche, P., Debelle, F., Maillet, F., Lerouge, P., Faucher, C., Truchet, G., Denarie, J. and Prome, J.C. 1991. Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell 67: 1131–1143.CrossRefPubMedGoogle Scholar
  66. Rolfe, B.G. 1988. Flavones and isoflavones as inducing substances of legume nodulation. BioFactors 1: 3–10.PubMedGoogle Scholar
  67. Roudier, F., Fedorova, E., Györgyey, J., Fehér, A., Brown, S., Kondorosi, A. and Kondorosi, E. 2000. Cell cycle function of a Medicago sativa A2-type cyclin interacting with a PSTAIREtype cyclin-dependent kinase and a retinoblastoma protein. Plant J. (in press).Google Scholar
  68. Savouré, A., Magyar, Z., Pierre, M., Brown, S., Schultze, M., Dudits, D., Kondorosi, A. and Kondorosi, E. 1994. Activation of the cell cycle machinery and the isoflavonoid biosynthesis pathway by active Rhizobium meliloti Nod signal molecules in Medicago microcallus suspensions. EMBO J. 13: 1093–1102.PubMedGoogle Scholar
  69. Savouré, A., Sallaud, C., El-Turk, J., Zuanazzi, J., Ratet, P., Schultze, M., Kondorosi, A., Esnault, R. and Kondorosi, E. 1997. Distinct response of Medicago suspension cultures and roots to Nod factors and chitin oligomers in the elicitation of defense-related responses. Plant J. 11: 277–287.Google Scholar
  70. Schlaman, H.R.M., Gisel, A.A., Quaedvlieg, N.E.M., Bloemberg, G.V., Lugtenberg, B.J.J., Kijne, J.W., Potrykus, I., Spaink, H.P. and Sautter, C. 1997. Chitin oligosaccharides can induce cortical cell division in roots of Vicia sativa when delivered by ballistic microtargeting. Development 124: 4887–4895.PubMedGoogle Scholar
  71. Schlaman, H.R.M., Phillips, D.A. and Kondorosi, E. 1998. Genetic organization and transcriptional regulation of rhizobial nodulation genes. In: H.P. Spaink, A. Kondorosi and P. Hooykaas (Eds) The Rhizobiaceae, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 361–386.Google Scholar
  72. Schmidt, J.S., Harper, J.E., Hoffman, T.K. and Bent, A.F. 1999. Regulation of soybean nodulation independent of ethylene signaling. Plant Physiol. 119: 951–960.PubMedGoogle Scholar
  73. Schultze, M. and Kondorosi, A. 1998. Regulation of symbiotic root nodule development. Annu. Rev. Genet. 32: 33–57.PubMedGoogle Scholar
  74. Schultze, M., Kondorosi, E., Ratet, P., Buire, M. and Kondorosi, A. 1994. Cell and molecular biology of Rhizobium-plant interactions. Int. Rev. Cytol. 156: 1–75.Google Scholar
  75. Schultze, M., Staehelin, C., Brunner, F., Genetet, I., Legrand, M., Fritig, B., Kondorosi, E. and Kondorosi, A. 1998. Plant chitinase/ lysozyme isoforms show distinct substrate specificity and cleavage site preference towards lipochitooligosaccharide Nod signals. Plant J. 16: 571–580.Google Scholar
  76. Schwab, M., Lutum, A.S. and Seufert, W. 1997. Yeast HctI is a regulator of Clb2 cyclin proteolysis. Cell 90: 683–693.PubMedGoogle Scholar
  77. Sekine, M., Ito, M., Uemukai, K., Maeda, Y., Nakagami, H. and Shinmyo, A. 1999. Isolation and characterization of the E2F-like gene in plants. FEBS Lett. 460: 117–122.PubMedGoogle Scholar
  78. Sherr, C.J. 1994. G1 phase progression: cycling on cue. Cell 79: 551–555.CrossRefPubMedGoogle Scholar
  79. Sherr, C.J. 1995. D-type cyclins. Trends Biochem. Sci 20: 187–190.PubMedGoogle Scholar
  80. Shimizu, S. and Mori, H. 1998. Analysis of cycles of dormancy and growth in pea axillary buds based on mRNA accumulation patterns of cell cycle-related genes. Plant Cell Physiol. 39: 255–262.Google Scholar
  81. Sigrist, S.J. and Lehner, C.F. 1997. Drosophila fizzy related downregulates mitotic cyclins and is required for cell proliferation arrest and entry into endocycles. Cell 90: 671–681.PubMedGoogle Scholar
  82. Smit, G., de Koster, C.C., Schripsema, J., Spaink, H.P., van Brussel, A.A. and Kijne, J.W. 1995. Uridine, a cell division factor in pea roots. Plant Mol. Biol. 29: 869–873.PubMedGoogle Scholar
  83. Sondek, J., Bohm, A., Lambright, D.G., Hamm, H.E. and Sigler, P.B. 1996. Crystal structure of a G-protein beta gamma dimer at 2.1Åresolution. Nature 379: 369–374.PubMedGoogle Scholar
  84. Soni, R., Carmichael, J.P., Shah, Z.H. and Murray, J.A. 1995. A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell 7: 85–103.CrossRefPubMedGoogle Scholar
  85. Sorrell, D.A., Combettes, B., Chaubet-Gigot, N., Gigot, C. and Murray, J.A. 1999. Distinct cyclin D genes show mitotic accumulation or constant levels of transcripts in tobacco Bright Yellow-2 cells. Plant Physiol. 119: 343–352.CrossRefPubMedGoogle Scholar
  86. Takahashi, Y., Hasezawa, S., Kusaba, M. and Nagata, T. 1995. Expression of the auxin-regulated parA gene in transgenic tobacco and nuclear localization of its gene products. Planta 196: 111–117.PubMedGoogle Scholar
  87. Takahashi, Y., Sakai, T., Ishida, S. and Nagata, T. 1995. Identification of auxin-responsive elements of parB and their expression in apices of shoot and root. Proc. Natl. Acad. Sci. USA 92: 6359–6363.PubMedGoogle Scholar
  88. Truchet, G. 1978. Sur l'état diploïde des cellules du méristème des nodules radiculaires des légumineuses. Ann. Sci. Nat. Bot. Paris 19: 3–38.Google Scholar
  89. Truchet, G., Barker, D.G., Camut, S., De Billy, F., Vasse, J. and Huguet, T. 1989. Alfalfa nodulation in the absence of Rhizobium. Mol. Gen. Genet. 219: 65–68.Google Scholar
  90. Truchet, G., Roche, P., Lerouge, P., Vasse, J., Camut, S., De Billy, F., Promé, J.C. and Dénarié, J. 1991. Sulphated lipooligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351: 670–673.CrossRefGoogle Scholar
  91. van Brussel, A.A.N., Bakhuizen, R., van Spronsen, P.C., Spaink, H.P., Tak, T., Lugtenberg, B.J.J. and Kijne, J.W. 1992. Induction of preinfection thread structures in the leguminous host plant by mitogenic lipo-oligosaccharides of Rhizobium. Science 257: 70–72.Google Scholar
  92. van de Sande, K., Pawlowski, K., Czaja, I., Wieneke, U., Schell, J., Schmidt, J., Walden, R., Matvienko, M., Wellink, J., van Kammen, A., Franssen, H. and Bisseling, T. 1996. Modification of phytohormone response by a peptide encoded by ENOD40 of legumes and a nonlegume. Science 273: 370–373.PubMedGoogle Scholar
  93. Vasse, J., De Billy, F., Camut, S. and Truchet, G. 1990. Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J. Bact. 172: 4295–4306.PubMedGoogle Scholar
  94. Verma, D.P.S. 1992. Signals in root nodule organogenesis and endocytosis of Rhizobium. Plant Cell 4: 373–382.CrossRefPubMedGoogle Scholar
  95. Vijn, I., Yang, W.C., Pallisgard, N., Jensen, E.O., van Kammen, A. and Bisseling, T. 1995. VsENOD5, VsENOD12 and VsENOD40 expression during Rhizobium-induced nodule formation on Vicia sativa roots. Plant Mol. Biol. 28: 1111–1119.PubMedGoogle Scholar
  96. Visintin, R. and Prinz S. 1997. CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278: 460–463.PubMedGoogle Scholar
  97. Weinberg, R.A. 1995. The retinoblastoma protein and cell cycle control. Cell 81: 323–330.CrossRefPubMedGoogle Scholar
  98. Xie, Q., Sanz-Burgos, A.P., Hannon, G.J. and Gutierrez, C. 1996. Plant cells contain a novel member of the retinoblastoma family of growth regulatory proteins. EMBO J. 15: 4900–4908.PubMedGoogle Scholar
  99. Yamagushi, S., Murakami, H. and Okayama, H. 1997. AWD-repeat protein controls the cell cycle and differentiation by negatively regulating Cdc2/B-type cyclin complex. Mol. Biol. Cell 8: 2475–2486.PubMedGoogle Scholar
  100. Yang, W., Katinakis, P., Hendriks, P., Smolders, A., de Vries, F., Spee, J., van Kammen, A., Bisseling, T. and Franssen, H. 1993. Characterization of GmENOD40, a gene showing novel patterns of cell-specific expression during soybean nodule development Plant J. 3: 573–585.Google Scholar
  101. Yang, W.C., de Blank, C., Meskiene, I., Hirt, H., Bakker, J., van Kammen, A., Franssen, H. and Bisseling, T. 1994. Rhizobium Nod factors reactivate the cell cycle during infection and nodule primordium formation, but the cycle is only completed in primordium formation. Plant Cell 6: 1415–1426.CrossRefPubMedGoogle Scholar
  102. Zachariae, W., Schwab, M., Nasmyth, K. and Seufert, W. 1998. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282: 1721–1724.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Fabrice Foucher
    • 1
  • Eva Kondorosi
    • 1
  1. 1.Institut des Sciences Végétales, UPR40Centre National de la Recherche ScientifiqueGif-sur-Yvette CedexFrance

Personalised recommendations