Advertisement

Plant Growth Regulation

, Volume 24, Issue 3, pp 211–217 | Cite as

Ecophysiological responses of homoiochlorophyllous and poikilochlorophyllous desiccation tolerant plants: a comparison and an ecological perspective

  • Zoltán Tuba
  • C.F. Protor
  • Zsolt Csintalan
Article

Abstract

There is an apparently stark contrast in ecophysiological adaptation between the poikilochlorophyllous desiccation-tolerant (PDT) angiosperm Xerophyta scabrida and homoichlorophyllous desiccation-tolerant (HDT) lichens and bryophytes. We summarise measurements on Xerophyta and on the temperate dry-grassland lichen Cladonia convoluta and the moss Tortula ruralis through a cycle of desiccation and rehydration. Considered in a broad ecological and evolutionary context, desiccation tolerance in general can be seen as evading some of the usual problems of drought stress, and these plants as particular instances drawn from an essentially continuous spectrum of adaptive possibilities – related on the one hand to the physical scale of the plants, and on the other to the time-scale of wetting and drying episodes.

chlorophyll a+b CO2 assimilation desiccation-tolerance mechanism ecological adaptation homoiochlorophyllous poikilochlorophyllous rehydration respiration resynthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bain JT and Proctor MCF (1980) The requirements of aquatic bryophytes for free CO2 as an inorganic carbon source: some experimental evidence. New Phytologist 87: 269-283Google Scholar
  2. 2.
    Bewley JD (1979) Physiological aspects of desiccation tolerance. Annual Review of Plant Physiology 30: 195-238Google Scholar
  3. 3.
    Bewley JD, Halmer P, Krochko JE and Winner WE (1978) Metabolismof a drought-tolerant and a drought-sensitive moss. Respiration, ATP synthesis and carbohydrate status. In: Crowe JH and Clegg JS (eds) Dry Biological Systems, pp 185-203. New York: Academic Press.Google Scholar
  4. 4.
    Csintalan Zs, Tuba Z, Lichtenthaler HK and Grace J (1996) Reconstitution of photosynthesis upon rehydration in the desiccated leaves of the poikilochlorophyllous monocot shrub Xerophyta scabrida at elevated CO2. Journal of Plant Physiology 148: 345-350Google Scholar
  5. 5.
    Dilks TJK and Proctor MCF (1974) The pattern of recovery of bryophytes after desiccation. Journal of Bryology 8: 97-115Google Scholar
  6. 6.
    Dilks TJK and Proctor MCF (1976a) Seasonal variation in desiccation tolerance in some British bryophytes. Journal of Bryology 9: 239-247Google Scholar
  7. 7.
    Dilks TJK and Proctor MCF (1976b) Effects of intermittent desiccation on bryophytes. Journal of Bryology 9: 249-264Google Scholar
  8. 8.
    Dilks TJK and Proctor MCF(1979) Photosynthesis, respiration and water content in bryophytes. New Phytologist 82: 97-114Google Scholar
  9. 9.
    Eickmeier WG (1979) Photosynthetic recovery in the resurrection plant Selaginella lepidophylla after wetting. Oecologia 39: 93-106Google Scholar
  10. 10.
    Gaff DF(1977) Desiccation tolerant vascular plants of southern Africa. Oecologia 31: 95-109Google Scholar
  11. 11.
    Gaff DF (1989) Responses of desiccation tolerant ‘resurrection’ plants to water stress. In: Kreeb KH, Richter H and Hinckley TM (eds) Structural and Functional Responses to Environmental Stresses, pp 264-311. The Hague: SPB Academic Publishing.Google Scholar
  12. 12.
    Gaff DF and Hallam ND(1974) Resurrecting desiccated plants. Royal Society of New Zealand Bulletin 12: 389-393Google Scholar
  13. 13.
    Gaff DF, Zee SY and O'Brien TP (1976) The fine structure of the dehydrated and reviving leaves of Borya nitida Labill. - a desiccation tolerant plant. Australian Journal of Botany 24: 225-236Google Scholar
  14. 14.
    Hambler DJ (1961) A poikilohydrous, poikilochlorophyllous angiosperm from Africa. Nature 191: 1415-1416Google Scholar
  15. 15.
    Hetherington SE and Smillie RM (1982) Humidity-sensitive degreening and regreening of leaves of Borya nitida Labill. as followed by changes in chlorophyll fluorescence. Australian Journal of Plant Physiology 9: 587-599Google Scholar
  16. 16.
    Hetherington SE, Hallam ND and Smillie RM (1982) Ultrastructural and compositional changes in chloroplast thylakoids of leaves of Borya nitida during humidity-sensitive degreening. Australian Journal of Plant Physiology 9: 601-609Google Scholar
  17. 17.
    Ibisch PL, Rauer G, Rudolph D and Barthlott W(1995) Floristic, biogeographical, and vegetational aspects of Pre-Cambrian rock outcrops (inselbergs) in eastern Bolivia. Flora 190: 299- 314Google Scholar
  18. 18.
    Ingram J and Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology 47: 377-403Google Scholar
  19. 19.
    Keever C (1957) Establishment of Grimmia laevigata on bare granite. Ecology 38: 422-429Google Scholar
  20. 20.
    Kershaw KA (1985) Physiological Ecology of Lichens. Cambridge University Press.Google Scholar
  21. 21.
    Lange OL (1969) Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. I. CO2-Gaswechsel von Ramalina maciformis (Del.) Bory unter kontrollierten Bedingungen im Laboratorium. Flora Abt. B 158: 324-359Google Scholar
  22. 22.
    Lange OL (1980) Moisture content and CO2 exchange of lichens. I. Influence of temperature andmoisture-dependent net photosynthesis and dark respiration in Ramalina maciformis. Oecologia 45: 82-87Google Scholar
  23. 23.
    Lange OL, Schulze E-D and Koch W (1970) Experimentellökologische Untersuchungen an Flechten der Negev-Wüste. II-CO2-Gaswechsel und Wasserhaushalt von Ramalina maciformis (Del.) Bory am natürlichen Standort während der sommerlichen Trockenperiode. Flora 159: 38-62Google Scholar
  24. 24.
    Lange OL, Schulze E-D and Koch W (1970) Experimentell-¨okologische Untersuchungen an Flechten der Negev-Wüste. II. CO2-Gaswechsel undWasserhaushalt von Krusten-und Blatt-flechten am natürlichen Standort während der sommerlichen Trockenperiode. Flora 159: 539-572Google Scholar
  25. 25.
    Levitt J (1972) Responses of Plants to Environmental Stress. New York and London: Academic PressGoogle Scholar
  26. 26.
    Meenks JLD, Tuba Z and Csintalan Zs (1991) Ecophysiological responses of Tortula ruralis upon transplantation around a power plant in West Hungary. Journal of the Hattori Botanical Laboratory 69: 21-35Google Scholar
  27. 27.
    Moore CJ, Luff SE and Hallam ND (1982) Fine structure and physiology of the desiccation-tolerant mosses Barbula torquata Tayl. and Triquetrella papillata (Hook. f &; Wils.) Broth. during desiccation and rehydration. Botanical Gazette (Chicago) 143: 358-367Google Scholar
  28. 28.
    Nash TH (1996) Photosynthesis, respiration, productivity and growth. In: Nash TH (ed) Lichen Biology, pp 88-120, Cambridge University PressGoogle Scholar
  29. 29.
    Noailles MC (1978) Etude ultrastructurale de la récupération hydrique apr`es une période de sécheresse chez une Hypnobryale: Pleurozium schreberi (Will.) Mitt. Ann Sci Nat Bot Biol Veg 19: 249-265Google Scholar
  30. 30.
    Oliver MJ, Mischler BD and Quisenberry JE (1993) Comparative measures of desiccation tolerance in the Tortula ruralis complex. I. Variation in damage control and repair. American Journal of Botany 80: 127-136Google Scholar
  31. 31.
    Oppenheimer HR and Halevy A (1962) Anabiosis of Ceterach officinarum Lam. et DC. Bulletin of the Research Council of Israel 11D3: 127-147Google Scholar
  32. 32.
    Pócs T (1976) Vegetation mapping in the Uluguru Mountains (Tanzania, East Africa). Boissiera 24b: 477-498Google Scholar
  33. 33.
    Proctor MCF (1982) Physiological ecology: water relations, light and temperature responses, carbon balance In: Smith AJE (ed) Bryophyte Ecology, pp 333-381. London: Chapman &; HallGoogle Scholar
  34. 34.
    Proctor MCF (1990) The physiological basis of bryophyte production. Botanical Journal of the Linnean Society 104: 61- 77Google Scholar
  35. 35.
    Proctor MCF, Raven JA and Rice SK (1992) Stable carbon isotope discrimination measurements in Sphagnum and other bryophytes: physiological and ecological implications. Journal of Bryology 17: 193-202Google Scholar
  36. 36.
    Proctor MCF and Smith AJE (1995) Ecological and systematic implications of branching patterns in bryophytes. In: Hoch PC and Stephenson AG (eds) Experimental and Molecular Approaches to Plant Biosystematics, pp 87-110. St. Louis, Mo: Missouri Botanical GardenGoogle Scholar
  37. 37.
    Raven JA (1977) The evolution of vascular land plants in relation to supracellular transport processes. Advances in Botanical Research 5: 153-219Google Scholar
  38. 38.
    Ried A (1960a) Stoffwechsel und Verbreitungsgrenzen von Flechten. II. Wasser-und Assimilationshaushalt, Entquellungs-und Submersionsresistenz von Krustenflechten benachbarter Standorte. Flora 149: 345-385Google Scholar
  39. 39.
    Ried A (1960b) Nachwirkungen der Entquellung auf den Gaswechsel von Krustenflechten. Biologisches Zentralblatt 79: 657-678Google Scholar
  40. 40.
    Sass L, Csintalan Zs, Tuba Z and Vass I (1996) Thermoluminescence studies on the function of Photosystem II in the desiccation tolerant lichen Cladonia convoluta. Photosynthesis Research 48: 205-212Google Scholar
  41. 41.
    Schonbeck MW and Bewley JD (1981) Responses of the moss Tortula ruralis to desiccation treatments. I. The effect of minimum water content and rates of dehydration and rehydration. Canadian Journal of Botany 59: 2698-2706Google Scholar
  42. 42.
    Schwab KB, Schreiber U and Heber U (1989) Response of photosynthesis and respiration of resurrection plants to desiccation and rehydration. Planta 177: 217-227Google Scholar
  43. 43.
    Sherwin HW and Faffant JM(1996) Differences in rehydration of three desiccation-tolerant angiospenn species. Annals of Botany 78: 703-710Google Scholar
  44. 44.
    Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist 125: 27-58Google Scholar
  45. 45.
    Smith DC and Molesworth S (1973) Lichen physiology. XIII. Effects of rewetting dry lichens. New Phytologist 72: 525- 533Google Scholar
  46. 46.
    Stuart TS (1968) Revival of respiration and photosynthesis in dried leaves of Polypodium polypodioides. Planta 83: 185-206Google Scholar
  47. 47.
    Tuba Z (1985) Photosynthetic pigment responses in Tortula ruralis during daily desiccation. Abstracta Botanica 9: 231- 239Google Scholar
  48. 48.
    Tuba Z, Lichtenthaler HK, Csintalan Zs and Pócs T (1993a) Regreening of the desiccated leaves of the poikilochlorophyllous Xerophyta scabrida upon rehydration. Journal of Plant Physiology 142: 103-108Google Scholar
  49. 49.
    Tuba Z, Lichtenthaler HK, Maróti I and Csintalan Zs (1993b) Resynthesis of thylakoids and functional chloroplasts in the desiccated leaves of the poikilochlorophyllous plant Xerophyta scabrida upon rehydration. Journal of Plant Physiology 142: 742-748Google Scholar
  50. 50.
    Tuba Z, Lichtenthaler HK, Csintalan Zs, Nagy Z and Szente K (1994) Reconstitution of chlorophylls and photosynthetic CO2 assimilation upon rehydration in the desiccated poikilochlorophyllous plant Xerophyta scabrida. Planta 192: 414-420Google Scholar
  51. 51.
    Tuba Z, Lichtenthaler HK, Csintalan Zs, Nagy Z and Szente K (1996a) Loss of chlorophylls, cessation of photosynthetic CO2 assimilation and respiration in the poikilochlorophyllous plant Xerophyta scabrida. Physiologia Plantarum 96: 383-388Google Scholar
  52. 52.
    Tuba Z, Csintalan Zs and Proctor MCF (1996b) Photosynthetic responses of a moss, Tortula ruralis, ssp. ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance: a baseline study at present-day CO2 concentration. New Phytologist 133: 353-361Google Scholar
  53. 53.
    Tuba Z, Smirnoff N, Csintalan Zs, Szente Kand Nagy Z (1997) Respiration during slow desiccation of the poikilochlorophyllous desiccation tolerant plant Xerophyta scabrida at presentday CO2 concentration. Plant Physiology and Biochemistry 35: 381-386Google Scholar
  54. 54.
    Tucker EB, Costerton JW and Bewley JD (1975) The ultrastructure of the moss Tortula ruralis on recovery from desiccation. Canadian Journal of Botany 53: 94-101Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Zoltán Tuba
    • 1
    • 2
  • C.F. Protor
    • 2
  • Zsolt Csintalan
    • 1
  1. 1.Department of Botany and Plant PhysiologyAgricultural University of GödöllőGödöllőHungary
  2. 2.Department of Biological SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK

Personalised recommendations