Journal of Materials Science

, Volume 36, Issue 5, pp 1149–1160 | Cite as

Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites

  • S. M. Haile
  • G. Staneff
  • K. H. Ryu


The interrelationship between defect chemistry, non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites (doped alkaline earth cerates and zirconates) has been investigated. Non-stoichiometry, defined as the deviation of the A : M molar ratio in AMO3 from 1 : 1, dramatically impacts conductivity, sinterability and chemical stability with respect to reaction with CO2. In particular, alkaline earth deficiency encourages dopant incorporation onto the A-atom site, rather than the intended M-atom site, reducing the concentration of oxygen vacancies. Transport along grain boundaries is, in general, less favorable than transport through the bulk, and thus only in fine-grained materials does microstructure impact the overall electrical properties. The chemical stability of high conductivity cerates is enhanced by the introduction of Zr. The conductivity of BaCe0.9−xZr x M0.1O3 perovskites monotonically decreases with increasing x (increasing Zr content), with the impact of Zr substitution increasing in the order M = Yb → Gd → Nd. Furthermore, the magnitude of the conductivity follows the same sequence for a given zirconium content. This result is interpreted in terms of dopant ion incorporation onto the divalent ion site.


Perovskite Chemical Stability Alkaline Earth Zirconium Content Defect Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Iwahara, T. Esaka, H. Uchida and N. Maeda, Solid State Ionics 3/4 (1981) 359.Google Scholar
  2. 2.
    N. Fukatsu, N. Kurita, T. Yajima, K. Koide K and T. Ohashi, J. Alloy Compd. 231 (1995) 706.Google Scholar
  3. 3.
    H. Iwahara, T. Yajima, T. Hibino and H. Ushida, J. Electrochem. Soc. 140 (1993) 1687.Google Scholar
  4. 4.
    K. D. Kreuer, E. SchÖnherr and J. Maier, in Proceedings of the 14th Risø International Symposium on Materials Science, Risø Natl. Lab., Roskilde, Denmark, 1993.Google Scholar
  5. 5.
    D. Shima and S. M. Haile, Solid State Ionics 97 (1997) 443.Google Scholar
  6. 6.
    J. Guan, S. E. Dorris, U. Balachandran and M. Liu, J. Electrochem. Soc. 145 (1998) 1780.Google Scholar
  7. 7.
    G. Ma, T. Shimura and H. Iwahara, Solid State Ionics 110 (1998) 103.Google Scholar
  8. 8.
    G. Ma, H. Matsumoto and H. Iwahara, ibid. 122 (1999) 237.Google Scholar
  9. 9.
    R. A. Davies, M. S. Islam and J. D. Gale, ibid. 126 (1999) 323.Google Scholar
  10. 10.
    A. S. Nowick and Y. Du, ibid. 77 (1995) 137.Google Scholar
  11. 11.
    S. M. Haile, D. West and J. Campbell, J. Mater. Res. 13 (1998) 1576.Google Scholar
  12. 12.
    F. Krug, T. Schober, R. Paul and T. Springer, Solid State Ionics 77 (1995) 185.Google Scholar
  13. 13.
    J. Luyten, F. De Schutter, J. Schram and J. Schoonman, ibid. 46 (1991) 117.Google Scholar
  14. 14.
    R. D. Shannon, Acta Cryst A 32 (1976) 751.Google Scholar
  15. 15.
    H. Nagamoto and H. Yamada, in Proceedings of the 2nd International Symposium on Ionic and Mixed Conducting Ceramics, San Francisco, 1994, edited by T. A. Ramanarayanan, W. L. Worrell and H. L. Tuller (The Electrochemical Society, Pennington, NJ, 1994) p. 39.Google Scholar
  16. 16.
    A. A. Ferreira, J. A. Labrincha and J. R. Frade, Solid State Ionics 77 (1995) 210.Google Scholar
  17. 17.
    D. W. Richardson, in “Modern Ceramic Engineering,” 2nd ed. (Marcel Dekker, Inc., New York, 1992) p. 528.Google Scholar
  18. 18.
    R. Saha, R. Babu, K. Nagarajan and C.K. Mathews, Thermochimica Acta 120 (1987) 29.Google Scholar
  19. 19.
    N. Bonanos, B. C. H. Steele and E. P. Butler, in “Impedance Spectroscopy,” edited by J. R. MacDonald (Wiley and Sons, New York, USA, 1988) p. 191.Google Scholar
  20. 20.
    H. Nafe, Solid State Ionics 13 (1984) 255.Google Scholar
  21. 21.
    X. Guo and R.-Z. Yuan, J. Mater. Sci. Lett. 14 (1995) 499.Google Scholar
  22. 22.
    G. M. Christie and F. P. F. Van Berkel, Solid State Ionics 83 (1996) 17.Google Scholar
  23. 23.
    J. Fleig and J. Maier, J. Electrochem. Soc. 145 (1998) 2081.Google Scholar
  24. 24.
    J. R. Macdonald and W. B. Johnson, in “Impedance Spectroscopy,” edited by J. R. MacDonald (Wiley and Sons, New York, 1988) p. 1.Google Scholar
  25. 25.
    D. L. West, M.S. Thesis, University of Washington, 1996 p. 72.Google Scholar
  26. 26.
    K. D. Kreuer, Solid State Ionics 97 (1997) 1.Google Scholar
  27. 27.
    I. Barin, “Thermochemical Data of Pures Substances: Vols 1 & 2” (VCH Publishers, New York, 1989).Google Scholar
  28. 28.
    E. Takayama-Muromachi and A. Navrotsky, J. Solid State Chem. 72 (1988) 244.Google Scholar
  29. 29.
    J. Goudiakas, R. G. Haire and J. Fuger, J. Chem. Thermodynamics 22 (1990) 577.Google Scholar
  30. 30.
    E. H. P. Cordfunke, A. S. Booij and M. E. Huntelaar, ibid. 30 (1998) 437.Google Scholar
  31. 31.
    L. R. Mensch and N. Mensi, in Proceedings of the 15th Rare Earth Research Conference, June 15-18, 1981, Univ. of Missouri, Rolla, edited by G. J. McCarthy and J. J. Rhyne (Plenum Press, New York, 1982) p. 279.Google Scholar
  32. 32.
    S. Gopalan and A. V. Virkar, J. Electrochem. Soc. 140 (1993) 1060.Google Scholar
  33. 33.
    K. T. Jacob and Y. Waseda, Met. Mat. Trans. 26B (1995) 775.Google Scholar
  34. 34.
    L. R. Morss, J. Less Comm. Met. 93 (1983) 301.Google Scholar
  35. 35.
    R. T. C. Slade, S. D. Flint and F. Singh, Solid State Ionics 82 (1995) 135.Google Scholar
  36. 36.
    H. Iwahara, T. Yajima, T. Hibino, K. Ozaki and H. Suzuki, ibid. 61 (1993) 65.Google Scholar
  37. 37.
    W. MÜnch, G. Seifert, K. D. Kreuer and J. Maier, ibid. 97 (1997) 39.Google Scholar
  38. 38.
    K. D. Kreuer,ibid. 125 (1999) 285.Google Scholar
  39. 39.
    H. G. Bohn and T. Schober, J. Amer. Ceram. Soc. 83 (2000) 768.Google Scholar
  40. 40.
    M. D. Mathews, E. B. Mizra and A. C. Momin, J. Mater. Sci. Lett. 10 (1991) 305.Google Scholar
  41. 41.
    K. S. Knight, Solid State Ionics 74 (1994) 109.Google Scholar
  42. 42.
    I. Charrier-Cougoulic, T. Pagnier and G. Lucazea, J. Solid State Chem. 142 (1999) 220.Google Scholar
  43. 43.
    T. Matzke and M. Cappadonia, Solid State Ionics 86-88 (1996) 659.Google Scholar
  44. 44.
    N. Sata, H. Yugami, Y. Akiyama, H. Sone, N. Kitamura, T. Hattori and M. Ishigame, ibid. 125 (1999) 383.Google Scholar
  45. 45.
    D. West, S. M. Haile and R. S. Feigelson, Mat. Res. Soc. Symp. Proc. 393 (1995) 31.Google Scholar
  46. 46.
    K. H. Ryu and S. M. Haile, Solid State Ionics 125 (1999) 355.Google Scholar
  47. 47.
    D. A. Stevenson, N. Jiang, R. M. Buchanan and F. E. G. Henn, ibid. 62 (1993) 279.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • S. M. Haile
    • 1
  • G. Staneff
    • 1
  • K. H. Ryu
    • 1
  1. 1.Materials ScienceCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations