Advertisement

Plant and Soil

, Volume 189, Issue 2, pp 245–255 | Cite as

Effect of a dense Allium ursinum (L.) ground cover on nutrient dynamics and mesofauna of a Fagus sylvatica (L.) woodland

  • Robert Jandl
  • Hubert Kopeszki
  • Gerhard Glatzel
Article

Abstract

The aboveground biomass built up annually by Allium ursinum (L.) contains similar amounts of nutrients as the foliage of mature Fagus sylvatica (L.) stands. The decomposition of the A. ursinum stand in early summer provides N rich forage for grazing mesofauna, especially favouring collembolans and accelerating mineralization of soil organic matter. Short term decreases of soil pH had no negative effect on populations of collembolans. Synergistic effects from soil fauna and microbes may accelerate nitrogen release from decomposing leaf litter. A positive feed back may have emerged. High animal abundance and diverse mesofauna populations are capable of high rates of litter fragmentation. Consequently, favourable conditions for microorganisms are created and allow high rates of mineralization and release of nutrients. Our data show that substantial amounts of nitrogen are lost from the system. Undisturbed forest ecosystems are considered to recycle mineralized nitrogen efficiently though. But temporal uncoupling of the N cycle due to microbial activity and delayed or decreased N uptake of higher plants can cause enhanced leaching even from undisturbed systems. The tendency to loose nutrients is apparent from high nitrate concentrations in the soil solution throughout the year. When nutrient losses from A. ursinum subsystems are considered, lateral nutrient imports from adjacent parts of the ecosystem have to be taken into account. If lateral import does not counterbalance losses, maintenance of the soil nutrient status must occur by weathering or a decline is to be expected.

Allium ursinum acidification beech stand nitrogen nutrient leaching soil mesofauna soil solution chemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beese F 1986 Parameter des Stickstoffumsatzes in Ökosystemen mit BöÖden unterschiedlicher Azidität. Göttinger Bodenkd. Ber. 90, 344.Google Scholar
  2. Binkley D and Hart S C 1989 The components of N availability assessments in forest soils. Adv. Soil Sci. 10, 57-112.Google Scholar
  3. Cassens-Sasse E 1987 Witterungsbedingte saisonale Versauerungssch übe im Boden zweier Waldökosysteme. Ber. Forschungsz. Waldökosysteme/Waldsterben, Reihe A, Bd 30. 287 p.Google Scholar
  4. Düll R and Kutzelnigg H 1988 Botanisch-ökologisches Exkursionstaschenbuch. 3. Auflage. Verlag Quelle and Mayer, Heidelberg.Google Scholar
  5. Eichhorn J 1995 Stickstoffsättigung und ihre Auswirkungen auf das Buchenwaldökosystem der Fallstudie Zierenberg. Ber. Forschungsz. Waldökosystemes Waldsterben, Reihe A, Bd 124. 175 p.Google Scholar
  6. Ellenberg H, Mayer R and Schauermann J 1986 ÖÖkosystemforschung-Ergebnisse des Sollingprojektes 1966-1986. Verlag E Ulmer, Stuttgart. 507 p.Google Scholar
  7. Eno C 1960 Nitrate production in the field by incubating the soil in polyethylene bags. Soil Sci. Soc. Am. Proc. 24, 277-279.Google Scholar
  8. FAO-Unesco-ISRIC 1988 Soil map of the world. Revised Legend. World Soil Resources Report 60. Food and Agriculture Organization of the United Nations, Rome. 119 p.Google Scholar
  9. Foster N W, Nicolson J A and Hazlett P W 1989 Temporal variation in nitrate and nutrient cations in drainage waters from a deciduous forest. J. Environ. Qual. 18, 238-244.Google Scholar
  10. Frissel M J 1978 Cycling of mineral nutrients in agricultural ecosystems. Elsevier Scient Publ. Comp., Amsterdam. 356 p.Google Scholar
  11. Führer H-W and Hüser R 1991 Bioelementausträge aus mit Buchen bestockten Wassereinzugsgebieten im Krodorfer Forst; Zeittrends und Effekte von Verjüngungseingriffen. Forstwiss. Centralbl. 110, 244-247.Google Scholar
  12. Funke W 1986 Tiergesellschaften im Ökosystem 'Fichtenforst' (Protozoa, Metazoa-Invertebrata)-Indikatoren von Veränderungen in Waldökosystemen. KfK-PEF 9. Karlsruhe.Google Scholar
  13. Funke W 1987 Wirbellose Tiere als Indikatoren in Wäldern. VDIBerichte 609, 133-176.Google Scholar
  14. Ghilarov M S 1978 Bodenwirbellose als Indikatoren des Bodenhaushaltes und von bodenbildenden Prozessen. Pedobiologia 18, 300-309.Google Scholar
  15. Ghilarov M S 1980 Bodenwirbellose als Indikatoren des Bodenhaushaltes und seiner Änderungen unter anthropogenen Ein-flüssen. Z. Bioindikation 1, 3-9.Google Scholar
  16. Gisin H 1960 Collembolenfauna Europas. Museum d'Histoire Naturelle, Geneve. 312 p.Google Scholar
  17. Glatzel G 1990 The nitrogen status of Austrian forest ecosystems as influenced by atmospheric deposition, biomass harvesting and lateral organomass exchange. Plant Soil 128, 67-74.Google Scholar
  18. Glatzel G, Kazda M and Lindebner L 1986 Die Belastung von Buchenwaldökosystemen durch Schadstoffdeposition im Nahbereich städtischerBallungsgebiete-Untersuchungen imWienerwald. Düsseldorfer Geobot. Kolloquium 3, 15-32.Google Scholar
  19. Gosz J R, Likens G E and Bormann F H 1972 Nutrient content of litter fall in the Hubbard Brook experimental forest, New Hampshire. Ecology 53, 769-784.Google Scholar
  20. Grubb P J and Marks P L 1989 Spring flowers of eastern North American and European deciduous forests. Plants Today 3, 89- 96.Google Scholar
  21. Hagvar S and Abrahamsen G 1984 Collembola in Norwegian coniferous forest soils. III. Relations to soil chemistry. Pedobiologia 27, 331-339.Google Scholar
  22. Hagvar S and Kjondal R B 1981 Effects of artificial acid rain on the microarthropod fauna in decomposing birch leaves. Pedobiologia 22, 409-422.Google Scholar
  23. Halmschlager E 1987 Bodeneigenschaften entlang eines Querpro-files über einen windexponierten Rücken mit starker Streuverfrachtung in einem Laubwaldbestand desWienerwaldes. Diplomarbeit BOKU, Wien. 148 p.Google Scholar
  24. Hanlon R D G and Anderson J M 1979 The effects of collembola grazing on microbial activity in decomposing leaf litter. Oecologia 38, 93-99.Google Scholar
  25. Hanlon R D G and Anderson J M 1980 Influence of macroarthropod feeding activities on microflora in decomposing oak leaves. Soil Biol. Biochem. 12, 255-261.Google Scholar
  26. Hassall M, Parkinson D and Visser S 1986 Effects of the collembolan Onychiurus subteniuson decomposition of Populus tremuloidesleaf litter. Pedobiologia 29, 219-225.Google Scholar
  27. Hicks D J and Chabot B F 1985 Deciduous forest. InPhysiological Ecology of North American Plant Communities Chapter 12. Eds. B F Chabot and H A Mooney. Chapman and Hall, New York.Google Scholar
  28. Homann P S, Cole D W and van Miegroet H 1994 Relationships between cation and nitrate concentrations in soil solutions from mature and harvested Red alder stands. Can. J. For. Res. 24, 1646-1652.Google Scholar
  29. Ineson P, Leonard A and Anders J M 1982 Effects of collembolan grazing upon nitrogen and cation leaching from decomposing leaf litter. Soil Biol. Biochem. 14, 605-610.Google Scholar
  30. Ingham E R, Trofymow J.A, Ames R N, Hunt H W, Morley C R Moore J C and Coleman DC 1986 Trophic interactions and nitrogen cycling in a semi-arid grassland soil. 1. Seasonal dynamics of the natural populations, their interactions and effects on nitrogen cycling. J. Appl. Ecol. 23, 597-614.Google Scholar
  31. Kopeszki H 1988 Populationsdynamik und Indikatorwert der Boden-Mesofauna im Einflußbereich des sauren Buchen-Stammablaufes. Zool. Anz. 221, 368-378.Google Scholar
  32. Kopeszki H 1991 Abundanz und Abbauleistung der Mesofauna (Collembola) als Kriterien für die Bodenzustandsdiagnose im Wiener Buchenwald. Zool. Anz. 227, 136-159.Google Scholar
  33. Kopeszki H 1992 Versuch einer aktiven Bioindikation mit den bodenlebenden Collembolenarten Folsomia candida(Willem) und Heteromurus nitidus(TEMPLETON) in einem Buchenwaldö kosystem. Zool. Anz. 228, 82-90.Google Scholar
  34. Kopeszki Hand Jandl R 1994 DieMesofauna, insbesondere Collembolenfauna, im Buchen-Wienerwald in Abhängigkeit von Streu-Akkumulation und-Depletion. Zool. Anz. 231, 123-134.Google Scholar
  35. Kopeszki H 1997 Collembolenfauna, in Vienna beech wood in relation to litter accumulation and depletion. Polskie Pisma Entomologiczne, Bull. Entomol. de Pologne. Tom 64, 1/2 (In press).Google Scholar
  36. Lang E 1986 Heterotrophe und autotrophe Nitrifikation untersucht an Bodenproben van drei Buchenstandorten. Göttinger Bodenkundl. Ber. 89.Google Scholar
  37. MacFadyen A 1961 Improved funnel-type extractor for soilarthropods. J. Animal Ecol. 30, 171-184.Google Scholar
  38. Matzner E 1988 Der Stoffumsatz zweier Waldökosysteme im Solling. Ber. Forschungsz. Waldökosysteme/Waldsterben, Reihe A, Bd 40. 217 p.Google Scholar
  39. McBride M B 1994 Environmental chemistry of soils. Oxford University Press, New York. 406 p.Google Scholar
  40. Muller R N and Bormann F H 1976 Role ofErythronium americanumKer. in energyflow and nutrient dynamics of aNorthern hardwood forest ecosystem. Science 193, 1126-1128.Google Scholar
  41. Nadelhoffer K J, Aber J D and Melillo J M 1984 Seasonal patterns of ammonium and nitrate uptake in nine temperate forest ecosystems. Plant Soil 80, 321-355.Google Scholar
  42. Pallissa A 1964 Apterygota-Urinsekten. Die Tierwelt Mitteleuropas. Leipzig V:4, LFG la. 407 p.Google Scholar
  43. Prasse J 1980 Zur Bioindikation von Herbizideinflüssen mit Hilfe (Ö)kologischer Strukturen von endogäischen Mikroarthropodengesellschaften. Z. Bioindikation 4, 17-26.Google Scholar
  44. Reuss J O and Johnson D W 1986 Acid deposition and acidification of soils and waters. Ecol. Stud. 59. Springer, New York. 114 p.Google Scholar
  45. Runge M 1974 Die Stickstoffmineralisierung im Boden eines Sauerhumus-Buchenwaldes. Oecol. Plant. 9, 201-230.Google Scholar
  46. Rusek J 1982 European mesaphorura species of the sylvatica-group (Collembola, Onychiuridae, Tullbergiinae). Acta Bohemoslov 79, 14-30.Google Scholar
  47. Santos F P and Whitford W G 1981 The effect ofmicroarthropods on litter decomposition in a Chihuahuan desert ecosystem. Ecology 62, 654-663.Google Scholar
  48. SAS 1988 SAS/STAT User's Guide, Release 6.03 Edition. SAS Institute Inc., Cary, NC.Google Scholar
  49. Schwerdtfeger F 1978 Lehrbuch der TierÖkologie. Verlag P Parey, Hamburg. 384 p.Google Scholar
  50. Seastedt T R 1984 The role of microarthropods in decomposition and mineralization processes. Annu. Rev. Entomol. 29, 25-46.Google Scholar
  51. Seastedt T R and Crossley D A Jr 1988 Soil arthropods and their role in decomposition and mineralization processes. InForest Hydrology and Ecology at Coweeta. Eds. W T Swank and D A Crossley Jr. Ecol. Stud. Vol. 66. Springer Verlag, New York.Google Scholar
  52. Setälä H, Haimi J and Huhta V 1988 A microcosm study on the respiration and weight loss in birch litter and raw humus as influenced by soil fauna. Biol. Fertil. Soils 5, 282-287.Google Scholar
  53. Sohlenius B and Boström S 1986 Short term dynamics of nematode communities in arable soil-influence of nitrogen fertilization in barley crops. Pedobiologia 29, 183-191.Google Scholar
  54. Tomlinson G H 1990 Effects of acid deposition on the forests of Europe and North America. CRC Press, Boca Raton, FL. 281 p.Google Scholar
  55. Usher M B, Roger GB and Sparkes K E 1982 A review of progress in understanding the organization of communities of soil arthropods. Pedobiologia 23, 126-144.Google Scholar
  56. Vitousek P M, Gosz J R, Grier C C, Melillo J M, Reiners W A and Todd R L 1979 Nitrate losses from disturbed ecosystems. Science 204, 469-473.Google Scholar
  57. Vitousek P M, Gosz J R, Grier C C, Melillo J M and Reiners W A 1982 A comparative analysis of potential nitrification and nitrate mobility in forest ecosystems. Ecol. Monogr. 52, 155-177.Google Scholar
  58. Vitousek P M and Reiners W A 1975 Ecosystem succession and nutrient retention-a hypothesis. BioScience 25, 376-381.Google Scholar
  59. Wehrmann J and Scharpf H C 1979 Der Mineralstoffgehalt des Bodens als Maßstab für den Stickstoffdüngerbedarf (Nmin-Methode). Plant Soil 52, 109-126.Google Scholar
  60. Witkamp M 1966 Decomposition of leaf litter in relation to environment, microflora andmicrobial respiration. Ecology 47, 194-201.Google Scholar
  61. Zöttl H 1960 Dynamik der Stickstoffmineralisation in organischem Waldbodenmaterial Teil 1, 2, 3. Plant Soil 13, 183-223.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Robert Jandl
    • 1
  • Hubert Kopeszki
    • 2
  • Gerhard Glatzel
    • 3
  1. 1.Austrian Forest Research InstituteViennaAustria
  2. 2.Institute of ZoologyUniversity of ViennaAustria
  3. 3.Institute of Forest EcologyUniversity of Agriculture (BOKU)ViennaAustria

Personalised recommendations