Skip to main content
Log in

Microbiology of petroleum reservoirs

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Although the importance of bacterial activities in oil reservoirs was recognized a long time ago, our knowledge of the nature and diversity of bacteria growing in these ecosystems is still poor, and their metabolic activities in situ largely ignored. This paper reviews our current knowledge about these bacteria and emphasises the importance of the petrochemical and geochemical characteristics in understanding their presence in such environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adkins JP, Cornell LA & Tanner RS (1992) Microbial composition of carbonate petroleum reservoir fluids. Geomicrob. J. 10: 87–97.

    Google Scholar 

  • Aeckersberg F, Bak F & Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch. Microbiol. 156: 5–14.

    Google Scholar 

  • Amy PS & Haldeman DL (1997) Denizens of the deep. In: Amy PS & Haldeman DL (Ed) The Microbiology of the Terrestrial Deep Subsurface (pp 1–3). CRC Lewis, New York.

    Google Scholar 

  • Barth T (1991) Organic acids and inorganic ions in waters from petroleum reservoirs, Norwegian continental shelf: a multivariate statistical analysis and comparison with american reservoir formation waters. Appl. Geochem. 6: 1–15.

    Google Scholar 

  • Barth T & Riis M (1992) Interactions between organic acid anions in formation waters and reservoir mineral phases. Org. Geochem. 19: 455–482.

    Google Scholar 

  • Bastin ES (1926) The problem of the natural reduction of sulphates. Bull. Am. Assoc. Petrol. Geol. 10: 1270–1299.

    Google Scholar 

  • Beeder J, Nilsen RK, Rosnes JT, Torsvik T & Lien T (1994) Archaeglobus fulgidus isolated from hot North Sea oil field water. Appl. Environ. Microbiol. 60: 1227–1231.

    Google Scholar 

  • Beeder J, Torsvik T & Lien T (1995) Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch. Microbiol. 164: 331–336.

    Google Scholar 

  • Belyaev SS & Ivanov MV (1983) Bacterial methanogenesis in underground waters. Ecol. Bull. 35: 273–280.

    Google Scholar 

  • Belyaev SS, Wolkin R, Kenealy WR, De Niro MJ, Epstein S & Zeikus JG (1983) Methanogenic bacteria from the Bondyuzhskoe oil field: general characterization and analysis of stable-carbon isotopic fractionation. Appl. Environ. Microbiol. 45: 691–697.

    Google Scholar 

  • Bernard FP, Connan J & Magot M(1992) Indigenous microorganisms in connate water of many oil fields: a new tool in exploration and production techniques. In: SPE 24811. Proceedings of the Society of Petroleum Engineers, vol. II (pp 467–475). Society of Petroleum Engineers, Inc., Richardson, TX.

    Google Scholar 

  • Bhupatiraju VK, Sharma PK, McInerney MJ, Knapp RM, Fowler K & Jenkins W (1991) Isolation and characterization of novel halophilic anaerobic bacteria from oil field brines. Dev. Petrol. Sci. 31: 131–143.

    Google Scholar 

  • Bhupathiraju VK, McInerney MJ & Knapp RM (1993) Pretest studies for a microbially enhanced oil recovery field pilot in a hypersaline oil reservoir. Geomicrobiol. J. 11: 19–34.

    Google Scholar 

  • Bhupatiraju VK, Oren A, Sharma PK, Tanner RS, Woese CR & McInerney MJ (1994) Haloanaerobium salsugo sp. nov., a moderately halophilic, anaerobic bacterium from a subterranean brine. Int. J. Syst. Bacteriol. 44: 565–572.

    Google Scholar 

  • Borzenkov IA, Belyaev SS, Miller YM, Davidova IA & Ivanov MV (1997) Methanogenesis in the highly mineralized stratal watersm of the Bondyuzhskoe oil field. Microbiology (Engl. Tr.) 66: 104–110.

    Google Scholar 

  • Cayol JL, Ollivier B, Patel BKC, Prensier G, Guezennec J & Garcia JL (1994) Isolation and characterization of Halothermothrix orenii gen. nov. sp. nov., a halophilic, thermophilic, fermentative, strictly anaerobic bacterium. Int. J. Syst. Bacteriol. 44: 534–540.

    Google Scholar 

  • Cayol JL, Ollivier B, Patel BKC, Ravot G, Magot M, Ageron E, Grimont PAD & Garcia JL (1995) Description of Thermoanaerobacter brockii subsp. lactiethylicus subsp. nov., isolated from a deep subsurface French oil well, a proposal to reclassify Thermoanaerobacter finnii as Thermoanaerobacter brockii subsp. finnii comb. nov., and emended description of Thermoanaerobacter brockii. Int. J. Syst. Bacteriol. 45: 783–789.

    Google Scholar 

  • Christensen B, Torsvik T & Lien T (1992) Immunomagnetically captured thermophilic sulfate-reducing bacteria from North Seaoil field waters. Appl. Environ. Microbiol. 58: 1244–1248.

    Google Scholar 

  • Connan J, Lacrampe-Couloume G & Magot M (1996) Origin of gases in reservoirs. In: Dolenc A (Ed) Proceedings of the 1995 International Gas Research Conference. Government Institutes Inc., Rockville, MD.

    Google Scholar 

  • Cord-Ruwich R, Kleinitz W & Widdel F (1987) Sulphate-reducing bacteria and their activities in oil production. J. Petrol. Technol. 1: 97–106.

    Google Scholar 

  • Crolet JL & Magot M (1996) Non-SRB sulfidogenic bacteria in oilfield production facilities. Mat. Perf., March 1996: 60–64.

    Google Scholar 

  • Davey ME, Wood WA, Key R, Nakamura K & Stahl DA (1993). Isolation of three species of Geotoga and Petrotoga: two new genera, representing a new lineage in the bacterial line. System.Appl. Microbiol. 16: 191–200.

    Google Scholar 

  • Davidova IA, Harmsen HJM, Stams AJM, Belyaev SS & Zehnder AJB (1997) Taxonomic description of Methanococcoides euhalobius and its transfer to Methanohalophilus genus. Antonie van Leeuwenhoek 71: 313–318.

    Google Scholar 

  • Davydova-Charakhch'yan IA, Kuznetsova VG, Mityushina LL & Belyaev SS (1992a) Methane-forming bacilli from oil fields of Tataria and western Siberia. Microbiology (Engl. Tr.) 61: 299–305.

    Google Scholar 

  • Davydova-Charakhch'yan IA, Mileeva AN, Mityushina LL & Belyaev SS (1992b) Acetogenic bacteria from oil fields of Tataria and western Siberia. Microbiology (Engl. Tr.) 61: 306–315.

    Google Scholar 

  • Fardeau ML, Cayol JL, Magot M & Ollivier B (1993) H2 oxidation in the presence of thiosulfate by a Thermoanaerobacter strain isolated from an oil-producing well. FEMS Microbiol. Lett. 113: 327–332.

    Google Scholar 

  • Fardeau ML, Ollivier B, Patel BKC, Magot M, Thomas P, Rimbault A, Rocchiccioli F & Garcia JL (1997) Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int. J. Syst. Bacteriol. 47: 1013–1019.

    Google Scholar 

  • Faudon C, Fardeau ML, Heim J, Patel BKC, Magot M & Ollivier B (1995) Peptide and amino acid oxidation in the presence of thiosulfate by members of the genus Thermoanaerobacter. Curr.Microbiol. 31: 152–157.

    Google Scholar 

  • Fisher JBF (1987) Distribution and occurrence of aliphatic acid anions in deep subsurface waters. Geochim. Cosmochim. Acta 51: 2459–2468.

    Google Scholar 

  • Galushko AS & Rozanova EP (1991) Desulfobacterium cetonicum. sp. nov: a sulfate-reducing bacterium which oxidizes fatty acids and ketones. Microbiology (Engl. Tr.) 60: 102–107.

    Google Scholar 

  • Gevertz D, Paterek JR, Davey ME & Wood WA (1991) Isolation and characterization of anaerobic halophilic bacteria from oil reservoir brines. Dev. Petrol. Sci. Ser. 31: 115–129.

    Google Scholar 

  • Grassia GS, McLean KM, Glénat P, Bauld J & Sheehy AJ (1996). A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol.Ecol. 21: 47–58.

    Google Scholar 

  • Grbic-Galic D (1990) Anaerobic microbial transformation of nonoxygenated aromatic and alicyclic compounds in soil, subsurface, and freshwater sediments. In: Bollag JM & Stotzky G (Ed) Soil Biogeochemistry (pp 117–189). Marcel Dekker, New York.

    Google Scholar 

  • Greene AC, Patel BKC & Sheehy A (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese-and iron-reducing bacterium isolated from a petroleum reservoir. Int. J. Syst. Bacteriol. 47: 505–509.

    Google Scholar 

  • Harms G, Zengler K, Rabus R, Aeckersberg F, Minz D, Rosello-Mora R & Widdel F (1999) Anaerobic oxidation of o-xylene, m xylene, and homologous alkylbenzenes by new types of sulfatereducingbacteria. Appl. Environ. Microbiol. 65: 999–1004.

    Google Scholar 

  • Huu NB, Denner EBM, Ha DTC, Wanner G & Stan-Lotter H (1999). Marinobacter aequaeolei sp. nov., a halophilic bacterium isolated from a vietnamese oil-producing well. Int. J. Syst. Bacteriol. 49: 367–375.

    Google Scholar 

  • Ivanov MV, Belyaev SS, Zyakun AM, Bondars V & Laurinivicius K (1983) Microbiological methane formation in oil field development. Geokhimiya 11: 1647–1654.

    Google Scholar 

  • Jeanthon C, Reysenbach AL, L'Haridon S, Gambacorta A, Pace NR, Glénat P & Prieur D (1995) Thermotoga subterranea sp.nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch. Microbiol. 164: 91–97.

    Google Scholar 

  • Krekeler D, Sigalevich P, Teske P, Cypionka H & Cohen Y (1997) A sulfate-reducing bacterium from the oxic layer of a microbial mat from Solar Lake (Sinai), Desulfovibrio oxyclinae sp. nov.Arch. Microbiol. 167: 369–375.

    Google Scholar 

  • Krumholz L, Caldwell ME & Suflita JM (1996) Biodegradation of 'BTEX' hydrocarbons under anaerobic conditions. In: Crawford R & Crawford D (Ed) Bioremediation: Principles and Applications (pp 61–99). Cambridge University Press, Cambridge.

    Google Scholar 

  • L'Haridon S, Reysenbach AL, Glénat P, Prieur D & Jeanthon P (1995). Hot subterranean biosphere in a continental oil reservoir. Nature 377: 223–224.

    Google Scholar 

  • Lien T & Beeder J (1997) Desulfobacter vibrioformis sp. nov., a sulfate-reducer from a water-oil separation system. Int. J. Syst.Bacteriol. 47: 1124–1128.

    Google Scholar 

  • Lien T, Madsen M, Steen IH & Gjerdevik K (1998a) Desulfobulbus rhabdoformis sp. nov., a sulfate-reducer from a water-oil separation system. Int. J. Syst. Bacteriol. 48: 469–474.

    Google Scholar 

  • Lien T, Madsen M, Rainey FA & Birkeland N-K (1998b) Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int. J. Syst. Bacteriol. 48: 469–474.

    Google Scholar 

  • Leu J-Y, McGovern-Traa, Porter AJR & Hamilton WA (1998) Identification and phylogenetic analysis of thermophilic sulfatereducing bacteria in oil field samples by 16S rDNA gene cloning and sequencing. Anaerobe 4: 165–174.

    Google Scholar 

  • Magot M (1996) Similar bacteria in remote oil fields. Nature 379: 681.

    Google Scholar 

  • Magot M, Caumette P, Desperrier JM, Matheron R, Dauga C, Grimont F & Carreau L (1992) Desulfovibrio longus sp. nov., a sulfate-reducing bacterium isolated from oil-producing well. Int. J. Syst. Bacteriol. 42: 398–403.

    Google Scholar 

  • Magot M, Hurtevent C & Crolet JL (1993) Reservoir souring and well souring. In: Costa JM & Mercer AD (Eds.) Progress in the Understanding and Prevention of Corrosion (pp 573–575). The Institute of Materials, London, UK.

    Google Scholar 

  • Magot M, Fardeau ML, Arnauld O, Lanau C, Ollivier B, Thomas P & Patel BKC (1997a) Spirochaeta smaragdinae sp. nov., a new mesophilic strictly anaerobic spirochete from an oil field. FEMS Microbiol. Lett. 155: 185–191.

    Google Scholar 

  • Magot M, Ravot G, Campaignolle X, Ollivier B, Patel BKC, Fardeau ML, Thomas P, Crolet JL & Garcia JL (1997b) Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. Int. J. Syst. Bacteriol. 47: 818–824.

    Google Scholar 

  • Matz AA, Borisov AY, Mamedov YG & Ibatulin RR (1992) Commercial (pilot) test of microbial enhanced oil recovery. Proceedings of the 8th SPE/DOE Symposium on Enhanced Oil Recovery. SPE/DOE paper 24208. Society of Petroleum Engineers, Inc., Richardson, TX.

    Google Scholar 

  • McInnerney MJ & Sublette KL (1997) Petroleum microbiology: biofouling, souring, and improved oil recovery. In: Hurst CJ, Knudsen GR, McInnerney MJ, Stetzenbach LD & Walter MV (Eds.) Manual of Environmental Microbiology (pp 600–607). ASM Press, Washington, DC.

    Google Scholar 

  • Milekhina EI, Borzenkov IA, Zvyagintseva IS, Kostrikina NA & Belyaev SS (1998) Ecological and physiological characterization of aerobic eubacteria from oil fields of Tatarstan. Microbiology (Engl. Tr.) 67: 170–175.

    Google Scholar 

  • Moser DP & Nealson KH (1996) Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction. Appl. Environ. Microbiol. 62: 2100–2105.

    Google Scholar 

  • Nazina TN & Rozanova EP (1978) Thermophilic sulfate-reducing bacteria from oil strata. Microbiology (Engl. Tr.) 47: 142–148.

    Google Scholar 

  • Nazina TN, Ivanova AE Kanchaveli LP & Rozanova EP (1988) A new thermophilic methylotrophic sulfate-reducing bacterium, Desulfotomaculum kuznetsovii sp. nov. Microbiology (Engl. Tr.) 57: 823–827.

    Google Scholar 

  • Nazina TN, Ivanova AE, Mityushina LL & Belyaev SS (1993) Thermophilic hydrocarbon-oxidizing bacteria from oil strata. Microbiology (Engl. Tr.) 62: 359–365.

    Google Scholar 

  • Nazina TN, Ivanova AE, Golubeva OV, Ibatullin RR, Belyaev SS & Ivanov MV (1995) Occurrence of sulfate-and iron-reducing bacteria in stratal waters of the Romashkinskoe oil field. Microbiology (Engl. Tr.) 64: 203–208.

    Google Scholar 

  • Nealson KH & Saffarini D (1994) Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu. Rev. Microbiol. 48: 311–343.

    Google Scholar 

  • Ng TK, Weimer PJ & Gawel LJ (1989) Possible nonanthropogenic origin of two methanogenic isolates from oil-producing wells in the San Miguelito field, Ventura county, California. Geomicrobiol. J. 7: 185–192.

    Google Scholar 

  • Nga DP, Cam Ha DT, Hien LT & Stan-Lotter H (1996) Desulfovibrio vietnamensis sp. nov., a halophilic sulfate-reducing bacterium from vietnamese oil fields. Anaerobe 2: 385–392.

    Google Scholar 

  • Ni S & Boone DR (1991) Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae H1350, from an oil well. Int. J. Syst. Bacteriol. 41: 410–416.

    Google Scholar 

  • Ni S, Woese CR, Aldrich H.C. & Boone DR (1994) Transfer of Methanolobus siciliae to the genus Methanosarcina naming it Methanosarcina siciliae, and emendation of the genus Methanosarcina. Int. J. Syst. Bacteriol. 44: 357–359.

    Google Scholar 

  • Nilsen RK & Torsvik T (1996) Methanococcus thermolithotrophicus isolated from North Sea oil field reservoir water. Appl. Environ. Microbiol. 62: 728–731.

    Google Scholar 

  • Nilsen RK, Beeder J, Thostenson T & Torsvik T (1996a) Distribution of thermophilic marine sulfate reducers in North Sea oil field waters and oil reservoirs. Appl. Environ. Microbiol. 62: 1793–1798.

    Google Scholar 

  • Nilsen RK, Torsvik T & Lien T (1996b) Desulfotomaculum thermocisternum sp. nov., a sulfate-reducer isolated from a hot North Sea oil reservoir. Int. J. Syst. Bacteriol. 46: 397–402.

    Google Scholar 

  • Obraztsova AY, Tsyban VE, Laurina Vichus KS, Bezrukova LV & Belyaev SS (1987) Biological properties of Methanosarcina not utilizing carbonic acid and hydrogen. Microbiology (Engl. Tr.) 56: 807–812.

    Google Scholar 

  • Obraztsova AY, Shipin OV, Bezrukova LV & Belyaev SS (1988) Properties of the coccoid methylotrophic methanogen. Microbiology (Engl. Tr.) 56: 523–527.

    Google Scholar 

  • Ollivier B, Caumette P, Garcia JL & Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol. Rev. 58: 27–38.

    Google Scholar 

  • Ollivier B, Cayol JL, Patel BKC, Magot M, Fardeau ML & Garcia JL (1997) Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium from an oil producing well. FEMS Microbiol. Lett. 147: 51–56.

    Google Scholar 

  • Ollivier B, Fardeau ML, Cayol JL, Magot M, Patel BKC, Prensier G & Garcia JL (1998) Characterization of Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int. J. Syst. Bacteriol. 48: 821–828.

    Google Scholar 

  • Oremland & King (1989) Methanogenesis in hypersaline environments. In: Cohen Y & Rosenberg (Ed) Microbial Mats: Physiological Ecology of Benthic Microbial Communities (pp 180–190).American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Patel BKC, Andrews KT, Ollivier B, Mah RA & Garcia JL (1995) Reevaluating the classification of Halobacteroides and Haloanaerobacter species based on sequence comparisons of the 16S ribosomal RNA genes. FEMS Microbiol. Lett 134: 115–119.

    Google Scholar 

  • Philippi GT (1977) On the depth, time, and mechanism of origin of the heavy to medium gravity naphtenic crude oil. Geochim. Cosmochim. Acta 41: 33–52.

    Google Scholar 

  • Premuzic E & Woodhead A (1993) Microbial enhancement of oil recovery-Recent advances. Proceedings of the 1992 Conference on Microbial Enhanced Oil Recovery. Elsevier, Amsterdam.

    Google Scholar 

  • Rainey FA, Zhilina TN, Boulygina ES, Stackebrandt E, Tourova TP & Zavarzin GA (1995) The taxonomic status of the fermentative halophilic anaerobic bacteria: description of Haloanaerobiales ord. nov., Halobacteroidaceae fam. nov., Orenia gen. nov., and further taxonomic rearrangements at the genus and species level. Anaerobe 1: 185–199.

    Google Scholar 

  • Ravot G, Magot M, Fardeau ML, Patel BKC, Prensier G, Egan A, Garcia JL & Ollivier B (1995a) Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int. J. Syst. Bacteriol. 45: 308–314.

    Google Scholar 

  • Ravot G, Ollivier B, MagotM, Patel BKC, Crolet JL, Fardeau ML & Garcia JL (1995b) Thiosulfate reduction, an important physiological feature shared by members of the order Thermotogales. Appl. Environ. Microbiol. 61: 2053–2055.

    Google Scholar 

  • Ravot G, Ollivier B, Fardeau ML, Patel BKC, Andrews KT, Magot M & Garcia JL (1996) L-alanine production from glucose fermentation by hyperthermophilic members of the domains Bacteria and Archaea: a remnant of an ancestral metabolism? Appl. Environ. Microbiol. 62: 2657–2659.

    Google Scholar 

  • Ravot G, Magot M, Ollivier B, Patel BKC, Ageron E, Grimont PAD, Thomas P & Garcia JL (1997) Haloanaerobium congolense sp. nov., an anaerobic, moderately halophilic, thiosulfate-and sulfur-reducing bacterium from an african oil field. FEMS Microbiol. Lett. 147: 81–88.

    Google Scholar 

  • Redburn AC & Patel BKC (1994) Desulfovibrio longreachii sp. nov., a sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. FEMS Microbiol. Lett. 115: 33–38.

    Google Scholar 

  • Rees GN, Grassia GS, Sheehy AJ, Dwivedi PP & Patel BKC (1995) Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int. J. Syst. Bacteriol. 45: 85–89.

    Google Scholar 

  • Rees GN, Patel BKC, Grassia GS & Sheehy AJ (1997) Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium which ferments citrate. Int. J. Syst. Bacteriol. 47: 150–154.

    Google Scholar 

  • Rengpipat S, Langworthy TA & Zeikus JG (1988) Halobacteroides acetoethylicus sp. nov., a new obligately anaerobic halophile isolated from deep surface hypersaline environment. Syst. Appl. Microbiol. 11: 28–35.

    Google Scholar 

  • Rosnes JT, Torsvik T & Lien T (1991) Spore-forming thermophilic sulfate-reducing bacteria isolated from North Sea oil field waters. Appl. Environ. Microbiol. 57: 2302–2307.

    Google Scholar 

  • Rozanova EP & Khudyakova AI (1974) A new nonspore-forming thermophilic sulfate-reducing organism, Desulfovibrio thermophilus nov. sp. Microbiology (Engl. Tr.) 43: 1069–1075.

    Google Scholar 

  • Rozanova EP & Nazina TN (1979). Occurrence of thermophilic sulfate-reducing bacteria in oil-bearing strata. Microbiology (Engl. Tr.) 48: 907–911.

    Google Scholar 

  • Rozanova EP & Pivovarova TA. (1988) Reclassification of Desulfovibrio thermophilus (Rozanova, Khudyakova, 1974). Microbiology (Engl. Tr.) 57: 102–106.

    Google Scholar 

  • Rozanova EP, Nazina TN & Galushko AS (1988). Isolation of a new genus of sulfate-reducing bacteria and description of a new species of this genus, Desulfomicrobium aspheronum gen. nov. sp. nov. Microbiology (Engl. Tr.) 57: 634–641.

    Google Scholar 

  • Rueter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA, Jannasch HW & Widdel F (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372: 455–458.

    Google Scholar 

  • Semple KM & Westlake DWS (1987) Characterization of ironreducing Alteromonas putrefaciens strains from oil field fluids. Can. J. Micobiol. 33: 366–371.

    Google Scholar 

  • Stetter KO, Hoffmann A & Huber R (1993a) Microorganisms adapted to high temperature environments. In: Guerrero R & Pedros-Alio C (Ed) Trends in Microbial Ecology (pp 25–28).Spanish Society for Microbiology.

  • Stetter KO, Huber R, Blöchl E, Kurr M, Eden RD, Fielder M, Cash H & Vance I (1993b) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365: 743–745.

    Google Scholar 

  • Tardy-Jacquenod C, Caumette P, Matheron R, Lanau C, Arnauld O & Magot M (1996a) Characterization of sulfate-reducing bacteria isolated from oil-field waters. Can. J. Microbiol. 42: 259–266.

    Google Scholar 

  • Tardy-Jacquenod C, Magot M, Laigret F, Kaghad M, Patel BKC, Guezennec J, Matheron R & Caumette P (1996b) Desulfovibrio gabonensis sp. nov., a new moderately halophilic sulfatereducing bacterium isolated from an oil pipeline. Int. J. Syst. Bacteriol. 46: 710–715.

    Google Scholar 

  • Tardy-Jacquenod C, Magot M, Patel BKC, Matheron R & Caumette P (1998) Desulfotomaculum halophilum sp. nov., a new halophilic, spore-forming, sulfate-reducing bacterium isolated from oil production facilities. Int. J. Syst. Bacteriol. 48: 333–338.

    Google Scholar 

  • Telang AJ, Ebert S Foght JM, Westlake DWS, Jenneman GE, Gevertz D & Voordouw G (1997) Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Appl. Environ. Microbiol. 63: 1785–1793.

    Google Scholar 

  • Voordouw G, Voordouw JK, Jack JK, Foght J, Fedorak PM & Westlake DW (1992) Identification of distinct communities of sulfate-reducing bacteria in oil fields by reverse sample genome probing. Appl. Environ. Microbiol. 58: 3542–3552.

    Google Scholar 

  • Voordouw G, Armstrong SM, Reimer MF, Fouts B, Telang AJ, Shen Y & Gevertz D (1996) Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl. Environ. Microbiol. 62: 1623–1629.

    Google Scholar 

  • Zeikus JG, Dawson MA, Thompson TE, Ingvorsen K & Hatchikian EC (1983) Microbial ecology of volcanic sulphidogenesis: isolation and characterization of Thermodesulfobacterium commune gen. nov. and sp. nov. J. Gen. Microbiol. 129: 1159–1169.

    Google Scholar 

  • Zvyagintseva IS, Belyaev SS, Borzenkov IA, Kostrikina NA, Milekhina EI & Ivanov MV (1995) Halophilic archaebacteria from the Kalamkass oil field. Microbiology (Engl. Tr.) 64: 83–87.

    Google Scholar 

  • Zvyagintseva IS, Kostrikina NA & Belyaev SS (1998) Detection of halophilic in a upper devonian oil field in Tatarstan. Microbiology (Engl. Tr.) 67: 688–691.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magot, M., Ollivier, B. & Patel, B.K. Microbiology of petroleum reservoirs. Antonie Van Leeuwenhoek 77, 103–116 (2000). https://doi.org/10.1023/A:1002434330514

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002434330514

Navigation