Advertisement

Journal of Chemical Crystallography

, Volume 33, Issue 12, pp 969–975 | Cite as

Crystal and molecular structure of 1,2-difluoroethane and 1,2-diiodoethane

  • Floris Akkerman
  • Jürgen Buschmann
  • Dieter Lentz
  • Peter Luger
  • Eva Rödel
Article

Abstract

A single crystal of phase 1 of 1,2-difluoroethane was grown from the melt directly on an X-ray diffractometer close to the melting point of 169 K. It crystallizes in the monoclinic space group C2/c with lattice parameters a = 7.775(4), b = 4.4973(7), c = 9.024(3) Å, β = 101.73(1)°, V = 308.9(2) Å3, dcalc = 1.420 g cm−3 for Z = 4. A second phase of 1,2-difluoroethane was obtained under similar conditions which crystallizes in the orthorhombic space group P212121 with the unit cell parameters a = 8.0467(16), b = 4.5086(9), c = 8.279(2) Å,V = 300.36(11) Å3, dcalc = 1.461 g cm−3 for Z = 4. In both phases the 1,2-difluoroethane molecules adopt the gauche conformation with F–C–C–F torsion angles close to 68°. Crystals of 1,2-diiodoethane C2H4I2 were grown from pentane at −30°C. A platelet single crystal of the size 0.35 × 0.25 × 0.03 mm was measured with Mo Kα-radiation at 153 K. 1,2-Diiodoethane crystallizes in the monoclinic space group P21/n with a unit cell of a = 4.6051(7), b = 12.939(2), c = 4.7318(7) Å, β = 104.636(3)°, V = 272.79(7) Å3, Z = 2, dcalc = 3.431 g cm−3, μ(MoKα) = 11.353 mm−1. In the molecule the two neighboring iodine atoms are positioned anti. The shortest intermolecular contacts occur via iodine–iodine interactions resulting in layers of molecules in the crystal.

Conformation 1,2-diiodoethane 1,2-difluoroethane intermolecular iodine–iodine interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Friesen, D.; Hedberg, K. J. Am. Chem. Soc. 1980, 102, 3987.Google Scholar
  2. 2.
    Fernholt, L.; Kveseth, K. Acta Chem. Scand. Ser. A 1980, 34, 163.Google Scholar
  3. 3.
    Wolfe, S. Acc. Chem. Res. 1972, 5, 102.Google Scholar
  4. 4.
    Klaboe, P.; Nielsen, J.R. J. Chem. Phys. 1960, 33, 1764.Google Scholar
  5. 5.
    Harris, W.C.; Holtzclaw, J.R.; Kalasinsky, V.F. J. Chem. Phys. 1977, 67, 3330.Google Scholar
  6. 6.
    Huber-Wälchli, P.; Gunthard, Hs.H. Spectrochim. Acta 1981, 37A, 285.Google Scholar
  7. 7.
    Felder, P., Gunthard, H.H. J. Chem. Phys. 1984, 85, 1.Google Scholar
  8. 8.
    Durig, J.R.; Liu, Lian; Little, T.S.; Kalasinsky, V.F. J. Phys. Chem. 1992, 96, 8224.Google Scholar
  9. 9.
    Craig, N.C.; Chen, A.; Suh, K.H.; Klee, S.; Mellau, G.C.; Winnewisser, B.P.; Winnewisser, M. J. Am. Chem. Soc. 1997, 119, 4789.Google Scholar
  10. 10.
    Craig, N.C.; Chen. A.; Suh, K.H.; Klee, S.; Mellau, G.C.; Branda, P.; Winnewisser, B.P.; Winnewisser, M. J. Phys. Chem. A 1997, 101, 9302.Google Scholar
  11. 11.
    Butcher, S.S.; Cohen, R.A.; Rounds, T.C. J. Phys. Chem. 1971, 54, 4123.Google Scholar
  12. 12.
    Dreizler, H.; Seffek, D. Z. Naturforsch. Teil A 1981, 36, 1239.Google Scholar
  13. 13.
    Takeo, H.; Matsumura, C.; Morino, Y.J. J. Chem. Phys. 1986, 84, 4205.Google Scholar
  14. 14.
    Van Schaick, E.J.M.; Geise, H.J.; Mijlhoff, F.C.; Renes, G. J. Mol. Struct. 1973, 16, 23.Google Scholar
  15. 15.
    Bulthuis, J.; van den Berg, J.; Maclean, C. J. Mol. Struct. 1973, 16, 11 Abraham, R.J.; Kemp, R.H. J. Chem. Soc. B 1971, 1240.Google Scholar
  16. 16.
    Hirano, T.; Nonoyama, S.; Miyajima, T; Kurita, Y; Kawamura, T.; Sato, H. J. Chem. Soc., Chem. Commun. 1986, 606.Google Scholar
  17. 17.
    Radom, L.; Baker, J.; Gill, P.M.W.; Nobes, R.H.; Riggs, N.V. J. Mol. Struct. 1985, 126, 271.Google Scholar
  18. 18.
    Scharfenberger, P.; Hargittai I. J. Mol. Struct. 1984, 112, 65.Google Scholar
  19. 19.
    Smits, G.F.; Krol, M.C.; Kampen, P.N.V.; Altona, C. J. Mol. Struct.(THEOCHEM) 1986, 139, 247.Google Scholar
  20. 20.
    Raff, L.M. J. Phys. Chem. 1987, 91, 3226.Google Scholar
  21. 21.
    Wiberg, K.B.; Murcko, M.A. J. Phys. Chem. 1987, 91, 3616.Google Scholar
  22. 22.
    Miyajima, T.; Kurita, Y.; Hirano, T. J. Phys. Chem. 1987, 91, 3954.Google Scholar
  23. 23.
    Dixon, D.A.; Smart, B.E. J. Phys. Chem. 1988, 92, 2729.Google Scholar
  24. 24.
    Wiberg, K.B.; Murcko, M.A.; Laidig, K.E.; MacDougall, P.J. J. Phys. Chem. 1990, 94, 6956.Google Scholar
  25. 25.
    Engkvist, O.; Karlström, G.; Widmark, P.-O. Chem. Phys. Lett. 1997, 265, 19.Google Scholar
  26. 26.
    McKean, D.C. J. Phys. Chem. A 2000, 104, 8995.Google Scholar
  27. 27.
    Wiberg, K.B. Acc. Chem. Res. 1996, 29, 229.Google Scholar
  28. 28.
    Kveseth, K. Acta Chem. Scand. Ser. A 1974, 28, 482; Kveseth, K. Acta Chem. Scand. Ser. A 1975, 29, 307.Google Scholar
  29. 29.
    Brunvoll, J. Thesis, Norges Tekniske Hogskole, Trondheim, Norway, 1962.Google Scholar
  30. 30.
    Rohmen, E.; Hagen, K.; Stolevik, R. Tremmel, J. J. Mol. Struct. 1991, 243, 419.Google Scholar
  31. 31.
    Huang, J. Hedberg, K. J. Am. Chem. Soc. 1990, 112, 2070.Google Scholar
  32. 32.
    Park, J.D.; Abramo, J.; Hein, M.; Gray, D.N.; Lacher, J.R. J. Org. Chem. 1958, 23, 1661.Google Scholar
  33. 33.
    Buschmann, J.; Kleinhenz, S.; Lentz, D.; Luger, P.; Madappat, K.; Preugschat, D.; Thrasher, J.S. Inorg. Chem. 2000, 39, 2807.Google Scholar
  34. 34.
    Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A. J. Appl. Crystallogr. 1993, 26, 343.Google Scholar
  35. 35.
    Sheldrick, G.M., SHELX97 [Includes SHELXS97, SHELXL97, CIFTAB]—Programs for Crystal Structure Analysis (Release 97–2); Institüt für Anorganische Chemie der Universitát, Göttingen: Germany, 1998.Google Scholar
  36. 36.
    Farrugia, L.J. J. Appl. Crystallogr. 1999, 32, 837.Google Scholar
  37. 37.(a)
    Spek, A.L. Acta Crystallogr., Sect. A 1990, 46, C34. (b)Spek, A. L. PLATON, A Multipurpose Crystallographic Tool; Utrecht University; Utrecht, The Netherlands, 1998.Google Scholar
  38. 38.
    Farrugia, L.J. J. Appl. Crystallogr. 1997, 30, 565.Google Scholar
  39. 39.
    Steiner, Th. Cryst. Rev. 1996, 6, 1.Google Scholar
  40. 40.
    Taylor R.; Kennard, O. Acta Crystallogr., Sect. B 1983, 39, 133.Google Scholar
  41. 41.(a)
    Nardelli, M. Comput. Chem. 1983, 7, 95–97. (b)Nardelli, M. J. Appl. Crystallogr. 1995, 28, 659.Google Scholar
  42. 42.
    Bondi, A. J. Phys. Chem. 1964, 68, 441.Google Scholar
  43. 43.
    Wells, A.F. Structural Inorganic Chemistry, 5th Ed. Claredon Press; Oxford 1984.Google Scholar
  44. 44.
    du Mont, W.; Stenzel, V.; Jeske, J.; Jones, P.; Sebald, A.; Pohl, S.; Saak, W.; Bätcher, M. Inorg. Chem. 1994, 33, 1502.Google Scholar
  45. 45.
    Stenzel, V.; Jeske, J.; du Mont, W.; Jones, P. Inorg. Chem. 1997, 36, 443.Google Scholar
  46. 46.
    Baily, R.; Hook, L.; Watson, R.; Hanks, T.; Pennington, W. Crys. Eng. 2000, 3, 155.Google Scholar
  47. 47.
    Baily, R.; Padgett, C.; Metrangolo, P.; Resnati, G.; Hanks, T.; Pennington, W. Cryst. Growth Design 2001, 1, 165.Google Scholar
  48. 48.
    Pedireddi, V.; Reddy, D.; Goud, B.; Craig, D.; Rae, A.; Desiraju, G. J. Chem. Soc., Perkin Trans 2: Phys. Org. Chem. 1994, 11, 2353.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Floris Akkerman
    • 1
  • Jürgen Buschmann
    • 2
  • Dieter Lentz
    • 1
  • Peter Luger
    • 2
  • Eva Rödel
    • 2
  1. 1.Institut für Chemie – Anorganische und Analytische ChemieFreie Universität BerlinBerlinGermany
  2. 2.Institut für Chemie – KristallographieFreie Universität BerlinBerlinGermany

Personalised recommendations