Journal of Porous Materials

, Volume 10, Issue 3, pp 159–170 | Cite as

Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties

  • M.O. Adebajo
  • R.L. Frost
  • J.T. Kloprogge
  • O. Carmody
  • S. Kokot
Article

Abstract

This paper reviews the synthesis and the absorbing properties of the wide variety of porous sorbent materials that have been studied for application in the removal of organics, particularly in the area of oil spill cleanup. The discussion is especially focused on hydrophobic silica aerogels, zeolites, organoclays and natural sorbents many of which have been demonstrated to exhibit (or show potential to exhibit) excellent oil absorption properties. The areas for further development of some of these materials are identified.

porous materials silica aerogels zeolites organoclays natural sorbents oil sorption oil spill cleanup 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Fingas, Chemistry and Industry 24, 1005 (1995).Google Scholar
  2. 2.
    S. Kemnetz and C.A. Cody, US Patent 5,725,805 (1998).Google Scholar
  3. 3.
    R.R. Lessard and G. Demarco, Spill Science &; Technology Bulletin 6(1), 59 (2000).Google Scholar
  4. 4.
    C. Teas, S. Kalligeros, F. Zanikos, S. Stournas, E. Lois, and G. Anastopoulos, Desalination 140(3), 259 (2001).Google Scholar
  5. 5.
    R.D. Delaune, C.W. Lindau, and A. Jugsujinda, Spill Science &; Technology Bulletin 5(5/6), 357 (1999).Google Scholar
  6. 6.
    E. Pelletier and R. Siron, Environmental Toxicology &; Chemistry 18, 813 (1999).Google Scholar
  7. 7.
    J.G. Reynolds, P.R. Coronado, and L.W. Hrubesh, Energy Sources 23, 831 (2001).Google Scholar
  8. 8.
    J.G. Reynolds, P.R. Coronado, and L.W. Hrubesh, Journal of Non-Crystalline Solids 292, 127 (2001).Google Scholar
  9. 9.
    H. Yokogawa and M. Yokoyama, Journal of Non-Crystalline Solids 186, 23 (1995).Google Scholar
  10. 10.
    K.-H. Lee, S.-Y. Kim, and K.-P. Yoo, Journal of Non-Crystalline Solids 186, 18 (1995).Google Scholar
  11. 11.
    C.J. Daughney, Organic Geochemistry 31, 147 (2000).Google Scholar
  12. 12.
    H.M. Choi and R.M. Cloud, Environmental Science and Technology 26(4), 772 (1992).Google Scholar
  13. 13.
    X.-F. Sun, R. Sun, and J.-X. Sun, Journal of Agricultural and Food Chemistry 50(22), 6428 (2002).Google Scholar
  14. 14.
    C.K.W. Meininghaus and R. Prins, Microporous and Mesoporous Materials 35/36, 349 (2000).Google Scholar
  15. 15.
    S. Gitipour, M.T. Bowers, W. Huff, and A. Bodocsi, Spill Science &; Technology Bulletin 4(3), 155 (1997).Google Scholar
  16. 16.
    R.W. Melvold, S.C. Gibson, and R. Scarberry, Sorbents for liquid Hazardous Substance Cleanup and Control (Noyes Data Corp., Park Ridge, NJ, 1988).Google Scholar
  17. 17.
    The International Tanker Owner Pollution Federation Limited, Measures to Combat Oil Pollution (Graham &; Trotman Limited, London, 1980).Google Scholar
  18. 18.
    P. Scharzberg, U.S. Coast Guard Report No. 724110.1/2/1 (U.S. Coast Guard Headquarters, Washington, DC, 1971).Google Scholar
  19. 19.
    P. Schatzberg and D.F. Jackson, U.S. Coast Guard Report No. 734209.9 (U.S. Coast Guard Headquarters, Washington, DC, 1972).Google Scholar
  20. 20.
    M. Toyoda, J. Aizawa, and M. Inagaki, Desalination 115(2), 199 (1998).Google Scholar
  21. 21.
    L.W. Hrubesh, J.F. Poco, and P.R. Coronado, U.S. Patent 6,005,012 (1999).Google Scholar
  22. 22.
    J. Fricke, Scientific American 258(5), 92 (1988).Google Scholar
  23. 23.
    S.S. Kistler, Nature 127, 741 (1931).Google Scholar
  24. 24.
    G.A. Nicolaon and S.J. Teichner, Bulletin de la Societe Chimique de France 5, 1906 (1968).Google Scholar
  25. 25.
    F. Schwertfeger, W. Glaubitt, and U. Schubert, J. Non-Crystalline Solids 145(1-3), 85 (1992).Google Scholar
  26. 26.
    T.M. Tillotson and L.W. Hrubesh, J. Non-Crystalline Solids 145(1-3), 44 (1992).Google Scholar
  27. 27.
    Y.F. Lu, L. Han, C.J. Brinker, T.M. Niemczyk, and G.P. Lopez, Sens. Actuators, B-Chem. 36(1-3), 517 (1996).Google Scholar
  28. 28.
    D.Y. Sasaki, C.J. Brinker, C.S. Ashley, C.E. Daitch, K.J. Shea, and D.J. Rush, US Patent 6,057,377 (2000).Google Scholar
  29. 29.
    J.A. Patterson, US Patent 5,971,659 (1999).Google Scholar
  30. 30.
    R.A. Falk and K.F. Mueller, US Patent 4,266,080 (1981).Google Scholar
  31. 31.
    L.W. Hrubesh, P.R. Coronado, and J.H. Satcher, Journal of Non-Crystalline Solids 285(1-3), 328 (2001).Google Scholar
  32. 32.
    P.R. Coronado, L.W. Hrubesh, and J.G. Reynolds, US Patent 20020185444 (2002).Google Scholar
  33. 33.
    M.J. Ruhl, Chem. Eng. Prog. 89, 37 (1993).Google Scholar
  34. 34.
    E.N. Ruddy, Chem. Eng. Prog. 89, 28 (1993).Google Scholar
  35. 35.
    M.H. Stenzel, Chem. Eng. Prog. 89, 36 (1993).Google Scholar
  36. 36.
    T. Maesen and B. Marcus, in Studies in Surface Science and Catalysis 137—Introduction to Zeolite Science and Practice, edited by J.C. Jansen (Elsevier Science, Amsterdam, 2001), Vol. 137, p. 1.Google Scholar
  37. 37.
    D.W. Breck, Zeolite Molecular Sieves (Wiley, New York, 1974).Google Scholar
  38. 38.
    J. Küntzel, R. Ham, and T. Melin, Chem. Eng. Technol. 22(12), 991 (1999).Google Scholar
  39. 39.
    J. Küntzel, R. Ham, and T. Melin, Chem. Ing. Tech. 71, 508 (1999).Google Scholar
  40. 40.
    W. Otten, E. Gail, and T. Frey, Chem. Ing. Tech. 64, 915 (1992).Google Scholar
  41. 41.
    D.M. Ruthven, Chem. Eng. Prog. 84, 42 (1988).Google Scholar
  42. 42.
    J.C. Jansen, in Studies in Surface Science and Catalysis 137— Introduction to Zeolite Science and Practice, edited by J.C. Jansen (Elsevier Science, Amsterdam, 2001), p. 175.Google Scholar
  43. 43.
    T. Loiseau and G. Ferey, J. Mater. Chem. 6(6), 1073 (1996).Google Scholar
  44. 44.
    S.M. Campbell, D.M. Bibby, J.M. Coddington, and R.F. Howe, J. Catal. 161, 338 (1996).Google Scholar
  45. 45.
    R.M. Barrer and M.B. Makki, Can. J. Chem. 42, 1481 (1964).Google Scholar
  46. 46.
    C.W. Jones, S.-J. Hwang, T. Okubo, and M.E. Davis, Chem. Mater. 13, 1041 (2001).Google Scholar
  47. 47.
    G.T. Kerr, J. Phys. Chem. 72, 2594 (1968).Google Scholar
  48. 48.
    H.K. Beyer and I. Belenykaja, in Studies in Surface Science and Catalysis 5—Catalysis by Zeolites, edited by H. Praliaud (Elsevier Science, Amsterdam, 1980), Vol. 5, p. 203.Google Scholar
  49. 49.
    D. Barthomeuf, Zeolites 14(6), 394 (1994).Google Scholar
  50. 50.
    G.W. Skeels and D.W. Breck, in Proceedings of the 6th International Zeolite Conference, edited by A. Bisio (Butterworths, Guilford, UK, 1984), p. 87.Google Scholar
  51. 51.
    G. Ferey, C.R. Acad. Sci., Ser. IIc: Chim 1(1), 1 (1998).Google Scholar
  52. 52.
    M. Huang, A. Adnot, and S. Kiliaguine, J. Chem. Soc., Faraday Trans. 89(23), 4231 (1993).Google Scholar
  53. 53.
    X.S. Zhao and G.Q. Lu, J. Phys. Chem. 102, 1556 (1998).Google Scholar
  54. 54.
    P. Van Der Voort and E.F. Vansant, J. Liq. Chromatogr. Relat. Technol. 19, 2723 (1996).Google Scholar
  55. 55.
    N.Y. Chen, US Patent 3,732,326 (1973).Google Scholar
  56. 56.
    N.Y. Chen, J. Phys. Chem. 80, 60 (1976).Google Scholar
  57. 57.
    X.S. Zhao, Q. Ma, and G.Q. Lu, Energy &; Fuels 12, 1051 (1998).Google Scholar
  58. 58.
    K. Miki, H. Kitagawa, and R. Oyama, JP Patent 48083089 (1973).Google Scholar
  59. 59.
    P. Fejes, A. Kiss, P. Szakal, and F. Barna (Mrs.), HU Patent 25511 (1983).Google Scholar
  60. 60.
    J. Haruna and M. Meguro, JP Patent 04012015 (1992).Google Scholar
  61. 61.
    J. Haruna and T. Tanaka, JP Patent 04004039 (1992).Google Scholar
  62. 62.
    J. Haruna and M. Sano, JP Patent 04219185 (1992).Google Scholar
  63. 63.
    J. Haruna and T. Tanaka, JP Patent 04001242 (1992).Google Scholar
  64. 64.
    A. Kitta and T. Kosuga, JP Patent 2002316147 (2002).Google Scholar
  65. 65.
    K. Nagashima, F. Yamazaki, H. Okabe, K. Sakurai, and S. Sakai, JP Patent 08052350 (1996).Google Scholar
  66. 66.
    T. Andras, M. Gyorgy, A. Peter, B. Gyorgy, and J. Eszter, Muanyag es Gumi 34(2), 41 (1997).Google Scholar
  67. 67.
    X. Querol, J.C. Umaña, F. Plana, A. Alastuey, A. Lopez-Soler, A. Medinaceli, A. Valero, M.J. Domingo, and E. Garcia-Rojo, Fuel 80, 857 (2001).Google Scholar
  68. 68.
    J. Davidovits, J. Thermal Analysis 37, 1633 (1991).Google Scholar
  69. 69.
    H. Xu and J.S.J. Van Deventer, Int. J. Miner. Process 59, 247 (2000).Google Scholar
  70. 70.
    J.W. Phair, J.S.J. Van Deventer, and J.D. Smith, Ind. Eng. Chem. Res. 39, 2925 (2000).Google Scholar
  71. 71.
    W.-B. Xu, S.-P. Bao, S.-P. Tang, and P.-S. He, Gaofenzi Cailiao Kexue Yu Gongcheng 18(2), 183 (2002).Google Scholar
  72. 72.
    J.C. Swanepoel and C.A. Strydom, Applied Geochemistry 17, 1143 (2002).Google Scholar
  73. 73.
    R.E. Grim, Clay Mineralogy, 2nd edition (McGraw-Hill, New York, NY, 1968).Google Scholar
  74. 74.
    B.K.G. Theng, The Chemistry of Clay-Organic Reactions (John Wiley, New York, NY, 1974).Google Scholar
  75. 75.
    J.A. Raussell-Colom and J.M. Serratosa, in Chemistry of Clays and Clay Minerals, edited by A.C.D. Newman (Longmans, London, 1987), p. 371.Google Scholar
  76. 76.
    Z. Ding, J.T. Kloprogge, and R.L. Frost, J. Porous Materials 8, 273 (2001).Google Scholar
  77. 77.
    J.T. Kloprogge, J. Porous Materials 5, 5 (1998).Google Scholar
  78. 78.
    C.T. Chiou, P.E. Porter, and D.W. Schmedding, Environmental Science &; Technology 17, 227 (1983).Google Scholar
  79. 79.
    S.A. Boyd, J.F. Lee, and M. Mortland, Nature 333, 345 (1988).Google Scholar
  80. 80.
    M.B. McBride, I.J. Pinnava, and M.M. Mortland, in Advances in Environmental Science and Technology. Fate of Pollutants in the Air and Water Environments, Part 1 (John Wiley, New York, NY, 1977).Google Scholar
  81. 81.
    J.C. Evans and S.E. Pancoski, Transportation Research Record 1219, 160 (1989).Google Scholar
  82. 82.
    G.R. Alther, J.C. Evans, and S.E. Pancoski, in HMCRI's 9th National Conference, Superfund 88 (HMCRI, 9300 Columbia Blvd., Silver Spring, MD 20910, 1988), p. 440.Google Scholar
  83. 83.
    H. Moazed and T. Viraraghavan, Hazardous and Industrial Wastes 31, 187 (1999).Google Scholar
  84. 84.
    H. Moazed and T. Viraraghavan, Journal of Canadian Petroleum Technology 40(9), 37 (2001).Google Scholar
  85. 85.
    H. Moazed and T. Viraraghavan, Water, Air, and Soil Pollution 138(1-4), 253 (2002).Google Scholar
  86. 86.
    G.R. Alther, Journal—American Water Works Association 94(7), 115 (2002).Google Scholar
  87. 87.
    G.R. Alther, Waste Management (New York) 15(8), 623 (1995).Google Scholar
  88. 88.
    G. Alther, Contaminated Soil Sediment &; Water, 21 (2001).Google Scholar
  89. 89.
    G. Alther, Waste Management (Amsterdam, Netherlands) 22(5), 507 (2002).Google Scholar
  90. 90.
    G. Alther, Contaminated Soils 6, 225 (2001).Google Scholar
  91. 91.
    M.T. Bryk and N.M. Yakovenko, Khimiya i Tekhnologiya Vody 9(2), 186 (1987).Google Scholar
  92. 92.
    A.B. Bourlinos, E. Devlin, N. Boukos, A. Simopoulos, and D. Petridis, Clay Minerals 37(1), 135 (2002).Google Scholar
  93. 93.
    M. Toyoda, J. Aizawa, and M. Inagaki, Nippon Kagaku Kaishi 8, 563 (1998).Google Scholar
  94. 94.
    M. Toyoda, K. Moriya, J. Aizawa, and M. Inagaki, Nippon Kagaku Kaishi 3, 193 (1999).Google Scholar
  95. 95.
    M. Inagaki, H. Konno, M. Toyoda, K. Moriya, and T. Kihara, Desalination 128, 213 (1999).Google Scholar
  96. 96.
    M. Inagaki, K. Shibata, S. Etou, M. Toyoda, and J. Aizawa, Desalination 128, 219 (1999).Google Scholar
  97. 97.
    M. Toyoda, K. Moriya, and M. Inagaki, Tanso 187, 96 (1999).Google Scholar
  98. 98.
    M. Toyoda, K. Moriya, J. Aizawa, H. Konno, and M. Inagaki, Desalination 128, 205 (1999).Google Scholar
  99. 99.
    M. Toyoda and M. Inagaki, Carbon 38(2), 199 (2000).Google Scholar
  100. 100.
    B. Tryba, R.J. Kalenczuk, F. Kang, M. Inagaki, and A.W. Morawski, Mol. Crys. Liq. Cryst. 340, 113 (2000).Google Scholar
  101. 101.
    M. Inagaki, M. Toyoda, N. Iwashita, Y. Nishi, and H. Konno, Carbon Science 2(1), 1 (2001).Google Scholar
  102. 102.
    F. Fajula and D. Plee, Stud. Surf. Sci Catal. 85, 633 (1994).Google Scholar
  103. 103.
    W. Jarre, M. Marx, and R. Wurmb, Angewandte Makromolekulare Chemie 78, 67 (1979).Google Scholar
  104. 104.
    H.-M. Choi, Journal of Environmental Science and Health, Part A: Environmental Science and Engineering &; Toxic and Hazardous Substance Control A31(6), 1441 (1996).Google Scholar
  105. 105.
    K. Hori, M.E. Flavier, S. Kuga, T.B.T. Lam, and K. Iiyama, J. Wood Sci. 46, 401 (2000).Google Scholar
  106. 106.
    F. D'Hennezel and B. Coupal, CIM (Can. Inst. Mining Met.) Bull. 65(717), 51 (1972).Google Scholar
  107. 107.
    R. DePetris, US Patent 5186831 (1993).Google Scholar
  108. 108.
    J.P. Moreau, Textile Research Journal 63(4), 211 (1993).Google Scholar
  109. 109.
    Y. Kobayashi, R. Matsuo, and M. Nishiyama, Japanese Patent 52,138,081 (1977).Google Scholar
  110. 110.
    Corporate Author, Chem. Eng. 90(7), 49 (1983).Google Scholar
  111. 111.
    T.L. Faudree (III), US Patent 4,230,566 (1980).Google Scholar
  112. 112.
    H. Yoshiyuki, I. Toru, G. Tomoki, G. Takakiyo, U. Toro, and R. Kenji, European Patent 0,441,512,B1 (1994).Google Scholar
  113. 113.
    P.B. Fransham and D. Lynch, in Symp. Pap. Energy Biomass Wastes (Institute of Gas Technology, Chicago, IL, 1991), p. 895.Google Scholar
  114. 114.
    A. Gabrick, US Patent 4,941,978 (1989).Google Scholar
  115. 115.
    A. Gabrick, US Patent 5,104,548 (1992).Google Scholar
  116. 116.
    S. Kemnetz and C.A. Cody, US Patent 5,558,777 (1996).Google Scholar
  117. 117.
    C.A. Blaney and H.L. Griesbach (III), US Patent 5,834,385 (1998).Google Scholar
  118. 118.
    L.M. Robeson, R. Axelrod, and T.A. Manuel, US Patent 5,120,598 (1992).Google Scholar
  119. 119.
    B.J. Houston, Defense Technical Information Centre Report AEWES-MISC-PAPER-C-68-5 (Defense Technical Information Centre, 1968).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • M.O. Adebajo
    • 1
  • R.L. Frost
    • 1
  • J.T. Kloprogge
    • 1
  • O. Carmody
    • 1
  • S. Kokot
    • 1
  1. 1.School of Physical &; Chemical SciencesQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations