Advertisement

International Applied Mechanics

, Volume 39, Issue 8, pp 921–928 | Cite as

Deformation and Filtration Near a Well in a Porous Stratum with Linear Memory

  • T. K. Ramazanov
  • M. Kh. Gyulmamedov
Article

Abstract

The linearized equations for saturated elastic porous media and for surrounding elastic rock are solved simultaneously; and the Volterra principle is used to derive an integro-differential filtration equation for a homogeneous weakly compressible fluid in an axisymmetric stratum with linear memory and central well. An analytical expression for porosity variation is obtained and then used to determine the permeability coefficient. The solutions are analyzed for the case where the stratum exhibits memory described by regular and singular kernels of the integral operator

theory of filtration porous medium with linear memory stratum central well Volterra principle integro-differential equations porosity variation permeability coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Zh. S. Erzhanov, A. S. Soginov, and G. N. Gumenchok, Creep of Sediments: Theory and Experiment [in Russian], Nauka, Alma-Ata (1970).Google Scholar
  2. 2.
    M. A. Koltunov, Creep and Relaxation [in Russian], Vyssh. Shk., Moscow (1976).Google Scholar
  3. 3.
    V. N. Nikolaevskii, Mechanics of Porous and Fractured Media [in Russian], Nedra, Moscow (1984).Google Scholar
  4. 4.
    T. K. Ramazanov, “Filtration of a fluid in a stratum with linear memory,” in: Features of Field Development in the North Caspian Basin (Collection of Scientific Papers) [in Russian], Res. Inst. Nat. Gas Technol., Moscow (1986), pp. 18-27.Google Scholar
  5. 5.
    L. P. Khoroshun, “Fundamentals of the thermomechanics of saturated porous media,” Prikl. Mekh., 24, No. 4, 3-13 (1988).Google Scholar
  6. 6.
    H. Berckhemer, F. Auer, and J. Drisler, “High-temperature inelasticity and elasticity of mantle peridotite,” Phys. Earth Planet Int., 20, No. 1, 48-59 (1979).Google Scholar
  7. 7.
    L. P. Khoroshun and E. N. Shikula, “A note on the theory of short-term microdamageability of granular composites under thermal actions,” Int. Appl. Mech., 38, No. 1, 60-67 (2002).Google Scholar
  8. 8.
    Ya. Ya. Rushchitskii and R. M. Israfilov, “Waves in a saturated porous half-space. Part 1,” Int. Appl. Mech., 37, No. 4, 520-527 (2001).Google Scholar
  9. 9.
    Ya. Ya. Rushchitskii and R. M. Israfilov, “Waves in a saturated porous half-space. Part 2,” Int. Appl. Mech., 37, No. 5, 670-681 (2001).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • T. K. Ramazanov
    • 1
  • M. Kh. Gyulmamedov
    • 1
  1. 1.National Academy of Sciences of AzerbaijanInstitute for Problems of Deep Oil and Gas FieldsBaku

Personalised recommendations