Journal of Elasticity

, Volume 69, Issue 1–3, pp 41–72 | Cite as

Geometry and Mechanics of Uniform n-Plies: from Engineering Ropes to Biological Filaments

  • S. Neukirch
  • G.H.M. van der Heijden
Article

Abstract

We study the mechanics of uniform n-plies, correcting and extending previous work in the literature. An n-ply is the structure formed when n pretwisted strands coil around one another in helical fashion. Such structures are encountered widely in engineering (mooring ropes, power lines) and biology (DNA, proteins). We first show that the well-known lock-up phenomenon for n=2, described by a pitchfork bifurcation, gets unfolded for higher n. Geometrically, n-plies with n>2 are all found to behave qualitatively the same. Next, using elastic rod theory, we consider the mechanics of n-plies, allowing for axial end forces and end moments while ignoring friction. An exact expression for the interstrand pressure force is derived, which is used to investigate the onset of strand separation in plied structures. After defining suitable displacements we also give an alternative variational formulation and derive (nonlinear) constitutive relationships for torsion and extension (including their coupling) of the overall ply. For a realistic loading problem in which the ends are not free to rotate one needs to consider the topological conservation law, and we show how the concepts of link and writhe can be extended to n-plies.

multi-strand plies rod mechanics end loads constitutive relations twist-stretch coupling strand separation birdcaging helix link writhe wire rope DNA proteins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.F. Allemand, D. Bensimon, R. Lavery and V. Croquette, Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proc. National Acad. Sci. USA 95 (1998) 14152–14157.CrossRefADSGoogle Scholar
  2. 2.
    S.S. Antman, Nonlinear Problems of Elasticity. Springer, New York (1995).MATHGoogle Scholar
  3. 3.
    U. Bockelmann, B. Essevaz-Roulet and F. Heslot, DNA strand separation studied by single molecule force measurements. Phys. Rev. E 58 (1998) 2386–2394.CrossRefADSGoogle Scholar
  4. 4.
    G. Călugăreanu, Sur les classes d'isotopie des noeuds tridimensionnels et leurs invariants. Czechoslovak Math. J. 11 (1961) 588–625.MathSciNetGoogle Scholar
  5. 5.
    A. Cardou and C. Jolicoeur, Mechanical models of helical strands. ASME Appl. Mech. Rev. 50 (1997) 1–14.Google Scholar
  6. 6.
    C.R. Chaplin, Torsional failure of a wire rope mooring line during installation in deep water. Eng. Failure Anal. 6 (1998) 67–82.CrossRefGoogle Scholar
  7. 7.
    B.D. Coleman and D. Swigon, Theory of supercoiled elastic rings with self-contact and its application to DNA plasmids. J. Elasticity 60 (2000) 173–221.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    G.A. Costello, Theory of Wire Rope, 2nd edn. Springer, New York (1997).Google Scholar
  9. 9.
    E.H. Dill, Kirchhoff's theory of rods. Arch. Hist. Exact Sci. 44 (1992) 1–23.MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    B. Essevaz-Roulet, U. Bockelmann and F. Heslot,Mechanical separation of the complementary strands of DNA. Proc. National Acad. Sci. USA 94 (1997) 11935–11940.CrossRefADSGoogle Scholar
  11. 11.
    B. Fain, J. Rudnick and S. Östlund, Conformations of linear DNA. Phys. Rev. E 55 (1997) 7364–7368.CrossRefADSGoogle Scholar
  12. 12.
    W.B. Fraser and D.M. Stump, The equilibrium of the convergence point in two-strand yarn plying. Internat. J. Solids Struct. 35 (1998) 285–298.MATHCrossRefGoogle Scholar
  13. 13.
    W.B. Fraser and D.M. Stump, Twist in balanced-ply structures. J. Text. Inst. 89 (1998) 485–497.CrossRefGoogle Scholar
  14. 14.
    F.B. Fuller, The writhing number of a space curve. Proc. National Acad. Sci. USA 68 (1971) 815–819.MATHMathSciNetCrossRefADSGoogle Scholar
  15. 15.
    F.B. Fuller, Decomposition of the linking of a closed ribbon: a problem from molecular biology. Proc. National Acad. Sci. USA 75 (1978) 3557–3561.MATHMathSciNetCrossRefADSGoogle Scholar
  16. 16.
    D.E. Gilbert and J. Feigon, Multistranded DNA structures. Curr. Opin. Struct. Biol. 9 (1999) 305–314.CrossRefGoogle Scholar
  17. 17.
    O. Gonzalez and J.H. Maddocks, Global curvature, thickness, and the ideal shapes of knots. Proc. National Acad. Sci. USA 96 (1999) 4769–4773.MATHMathSciNetCrossRefADSGoogle Scholar
  18. 18.
    O. Gonzalez, J.H. Maddocks and J. Smutny, Curves, circles, and spheres. Contemporary Math. 304 (2002) 195–215.MATHMathSciNetGoogle Scholar
  19. 19.
    J.W.S. Hearle and A.E. Yegin, The snarling of highly twisted monofilaments. Part I: The loadelongation behaviour with normal snarling. J. Text. Inst. 63 (1972) 477–489; Part II: Cylindrical snarling. J. Text. Inst. 63 (1972) 490-501.Google Scholar
  20. 20.
    W. Jiang, A general formulation of the theory of wire ropes. ASME J. Appl. Mech. 62 (1995) 747–755.MATHCrossRefGoogle Scholar
  21. 21.
    W.G. Jiang, J.L. Henshall and J.M. Walton, A concise finite element model for three-layered straight wire rope strand. Internat. J. Mech. Sci. 42 (2000) 63–86.MATHCrossRefGoogle Scholar
  22. 22.
    C. Kang, X. Zhang, R. Ratliff, R. Moyzis and A. Rich, Crystal structure of four-stranded Oxytricha telomeric DNA. Nature 356 (1992) 126–131.CrossRefADSGoogle Scholar
  23. 23.
    V. Katritch, W.K. Olson, P. Pierański, J. Dubochet and A. Stasiak, Properties of ideal composite knots. Nature 388 (1997) 148–151.CrossRefADSGoogle Scholar
  24. 24.
    T. Kunoh and C.M. Leech, Curvature effects on contact position of wire strands. Internat. J. Mech. Sci. 27 (1985) 465–470.CrossRefGoogle Scholar
  25. 25.
    A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge Univ. Press, Cambridge (1927).MATHGoogle Scholar
  26. 26.
    A. Maritan, C. Micheletti, A. Trovato and J.R. Banavar, Optimal shapes of compact strings. Nature 406 (2000) 287–290.CrossRefADSGoogle Scholar
  27. 27.
    M. Moakher and J.H. Maddocks, A double-strand elastic rod theory. Preprint Institut Bernoulli, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (2002).Google Scholar
  28. 28.
    D.A.D. Parry and J.M. Squire (eds), Fibrous Proteins (Special issue). J. Struct. Biol. 122 (1998).Google Scholar
  29. 29.
    M. Peyrard and A.R. Bishop, Statistical mechanics of a nonlinear model for DNA denaturation. Phys. Rev. Lett. 62 (1989) 2755–2758.CrossRefADSGoogle Scholar
  30. 30.
    P. Pierański, In search of ideal knots. In: [35], pp. 20–41.Google Scholar
  31. 31.
    S. Przybyl and P. Pierański, Helical close packings of ideal ropes. European Phys. J. E 4 (2001) 445–449.CrossRefADSGoogle Scholar
  32. 32.
    I. Rouzina and V.A. Bloomfield, Force-induced melting of the DNA double helix 1: Thermodynamic analysis. Biophys. J. 80 (2001) 882–893; 2: Effect of solution conditions. Biophys. J. 80 (2001) 894-900.CrossRefGoogle Scholar
  33. 33.
    A. Sarkar, J.-F. Léger, D. Chatenay and J.F. Marko, Structural transitions in DNA driven by external force and torque. Phys. Rev. E 63 (2001) 051903.CrossRefADSGoogle Scholar
  34. 34.
    T. Simonsson, G-quadruplex DNA structures - variations on a theme. Biol. Chem. 382 (2001) 621–628.CrossRefGoogle Scholar
  35. 35.
    A. Stasiak, V. Katritch and L.H. Kauffman (eds), Ideal Knots, Series on Knots and Everything, Vol. 19. World Scientific, Singapore (1998).MATHGoogle Scholar
  36. 36.
    A. Stasiak and J.H. Maddocks, Best packing in proteins and DNA. Nature 406 (2000) 251–253.CrossRefADSGoogle Scholar
  37. 37.
    E.L. Starostin, On the writhe of non-closed curves. Preprint, Institut Bernoulli, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (2002); available at arXiv: physics/0212095.Google Scholar
  38. 38.
    T.R. Strick, J.-F. Allemand, D. Bensimon, A. Bensimon and V. Croquette, The elasticity of a single supercoiled DNA molecule. Science 271 (1996) 1835–1837.ADSGoogle Scholar
  39. 39.
    D.M. Stump, W.B. Fraser and K.E. Gates, The writhing of circular cross-section rods: undersea cables to DNA supercoils. Proc. Roy. Soc. London A 454 (1998) 2123–2156.MATHADSGoogle Scholar
  40. 40.
    J.M.T. Thompson, G.H.M. van der Heijden and S. Neukirch, Super-coiling of DNA plasmids: The mechanics of the generalised ply. Proc. Roy. Soc. London A 458 (2002) 959–985.MATHMathSciNetADSCrossRefGoogle Scholar
  41. 41.
    L.R.G. Treloar, The geometry of multy-ply yarns. J. Text. Inst. 47 (1956) T348–T368.Google Scholar
  42. 42.
    P.N.T. Unwin and P.D. Ennis, Two configurations of a channel-forming membrane protein. Nature 307 (1984) 609–613.CrossRefADSGoogle Scholar
  43. 43.
    G.H.M. van der Heijden, The static deformation of a twisted elastic rod constrained to lie on a cylinder. Proc. Roy. Soc. London A 457 (2001) 695–715.MATHMathSciNetADSGoogle Scholar
  44. 44.
    G.H.M. van der Heijden and J.M.T. Thompson, Helical and localised buckling in twisted rods: a uniform analysis of the symmetric case. Nonlinear Dynamics 21 (2000) 71–99.MATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    G.H.M. van der Heijden, J.M.T. Thompson and S. Neukirch, A variational approach to loaded ply structures. J. Vibration Control 9 (2003) 175–185.MATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    K.M. Vasquez, L. Narayanan and P.M. Glazer, Specific mutations induced by triplex-forming oligonucleotides in mice. Science 290 (2000) 530–533.CrossRefADSGoogle Scholar
  47. 47.
    J.H. White, Self-linking and the Gauss integral in higher dimensions. Amer. J. Math. 91 (1969) 693–728.MATHMathSciNetGoogle Scholar
  48. 48.
    M. Yeager and B.J. Nicholson, Structure of gap junction intercellular channels. Curr. Opin. Struct. Biol. 6 (1996) 183–192.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • S. Neukirch
    • 1
  • G.H.M. van der Heijden
    • 2
  1. 1.Bernoulli Mathematics Institute, Swiss Federal Institute of TechnologyLausanneSwitzerland
  2. 2.Centre for Nonlinear DynamicsUniversity College LondonLondon

Personalised recommendations