Advances in Computational Mathematics

, Volume 20, Issue 4, pp 385–399

Uniformly Convergent Multigrid Methods for Convection–Diffusion Problems without Any Constraint on Coarse Grids

  • Hwanho Kim
  • Jinchao Xu
  • Ludmil Zikatanov


We construct a class of multigrid methods for convection–diffusion problems. The proposed algorithms use first order stable monotone schemes to precondition the second order standard Galerkin finite element discretization. To speed up the solution process of the lower order schemes, cross-wind-block reordering of the unknowns is applied. A V-cycle iteration, based on these algorithms, is then used as a preconditioner in GMRES. The numerical examples show that this method is convergent without imposing any constraint on the coarsest grid and the convergence of the preconditioned method is uniform.

nonsymmetric and indefinite problems convection–diffusion equations multigrid method monotone finite element scheme EAFE scheme normal equation GMRES preconditioning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.A. Adams, So´olev Spaces (Academic Press, New York, 1975).Google Scholar
  2. [2]
    O. Axelsson, Iterative Solution Methods (Cam´ridge Univ. Press, Cam´ridge, 1994).Google Scholar
  3. [3]
    R.E. Bank, A comparison of two multilevel iterative methods for nonsymmetric and indefinite elliptic finite element equations, SIAM J. Numer. Anal. 18(4) (1981) 724–743.Google Scholar
  4. [4]
    R.E. Bank, W.M. Coughran and L.C. Cowsar, Analysis of the finite volume Scharfetter-Gummel method for steady convection-diffusion equations, Comput. Visual. Sci. 1(3) (1998) 123–136.Google Scholar
  5. [5]
    J. Bey and G. Wittum, Downwind num´ering: ro´ust multigrid method for convection-diffusion pro´lems, Appl. Numer. Math. 23(1) (1997) 177–192.Google Scholar
  6. [6]
    D. Braess and W. Hack´usch, A new convergence proof for the multigrid method including the V-cycle, SIAM J. Numer. Anal. 20 (1983) 967–975.Google Scholar
  7. [7]
    J.H. Bram´le, Multigrid Methods, Pitman Research Notes in Mathematical Sciences, Vol. 294 (Longman Scientific & Technical, Essex, UK, 1993).Google Scholar
  8. [8]
    J.H. Bram´le, D.Y. Kwak and J.E. Pasciak, Uniform convergence of multigrid V-cycle iterations for indefinite and nonsymmetric pro´lems, SIAM J. Numer. Anal. 31(6) (1994) 1746–1763.Google Scholar
  9. [9]
    J.H. Bram´le, Z. Leyk and J.E. Pasciak, Iterative schemes for nonsymmetric and indefinite elliptic ´oundary value pro´lems, Math. Comp. 60(201) (1993) 1–22.Google Scholar
  10. [10]
    J.H. Bram´le, J.E. Pasciak and J. Xu, The analysis of multigrid algorithms for nonsymmetric and indefinite elliptic pro´lems, Math. Comp. 51 (1988) 389–414.Google Scholar
  11. [11]
    J.H. Bram´le, J.E. Pasciak and J. Xu, The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms, Math. Comp. 56 (1991) 1–34.Google Scholar
  12. [12]
    F. Brezzi, L. Marini and P. Pietra, 2-dimensional exponential fitting and applications to drift-diffusion models, SIAM J. Numer. Anal. 26(6) (1989) 1342–1355.Google Scholar
  13. [13]
    X.-C. Cai and O. Widlund, Domain decomposition algorithms for indefinite elliptic pro´lems, SIAM J. Sci. Statist. Comput. 13(1) (1992) 243–258.Google Scholar
  14. [14]
    X.-C. Cai and O. Widlund, Multiplicative Schwarz algorithms for some nonsymmetric and indefinite pro´lems, SIAM J. Numer. Anal. 30(4) (1993) 936–952.Google Scholar
  15. [15]
    P. Ciarlet, The Finite Element Method for Elliptic Pro´lems, Studies in Mathematics and its Applications, Vol. 4 (North-Holland, Amsterdam, 1978).Google Scholar
  16. [16]
    P.G. Ciarlet and J.-L. Lions, eds., Hand´ook of Numerical Analysis, Vol. II. Finite Element Methods, Part 1 (North-Holland, Amsterdam, 1991).Google Scholar
  17. [17]
    L. Durlofsky, B. Engquist and S. Osher, Triangle ´ased adaptive stencils for the solution of hyper´olic conservation laws, J. Comput. Phys. 98(1) (1992) 64–73.Google Scholar
  18. [18]
    H.C. Elman, Iterative methods for large, sparse, nonsymmetric systems of linear equations, Technical Report 229, Department of Computer Science, Yale University (1982).Google Scholar
  19. [19]
    E. Gatti, S. Micheletti and R. Sacco, A new Galerkin framework for the drift-diffusion equation in semiconductors, East-West J. Numer. Math. 6(2) (1998) 101–135.Google Scholar
  20. [20]
    D. Gil´arg and N. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, Berlin, 1983).Google Scholar
  21. [21]
    W. Hack´usch, Multigrid Methods and Applications (Springer, Berlin, 1985).Google Scholar
  22. [22]
    W. Hack´usch, Iterative Solution of Large Sparse Systems of Equations (Springer, Berlin, 1994).Google Scholar
  23. [23]
    W. Hack´usch and T. Pro´st, Downwind Gauβ-Seidel smoothing for convection dominated pro´lems, Numer. Linear Alge´ra Appl. 4(2) (1997) 85–102.Google Scholar
  24. [24]
    H. Han, V.P. Il'in, R.B. Kellogg and W. Yuan, Analysis of flow directed iterations, J. Comput. Math. 10(1) (1992) 57–76.Google Scholar
  25. [25]
    S. Kaczmarz, Angenäherte Guflösung von Systemen linearer Gleichungen, Bulletin International de l'Académie Polonaise des Sciences et des Lettres. Classes des Sciences Mathématiques et Naturelles. Series A: Sciences Mathématiques (Imprimérie de l'Université, Cracovie, 1937) 355–357.Google Scholar
  26. [26]
    J. Mandel, Multigrid convergence for nonsymmetric, indefinite variational pro´lems and one smoothing step, Second Copper Mountain Conference on Multigrid Methods, Copper Mountain, CO, 1985, Appl. Math. Comput. 19(1-4) (1986) 201–216.Google Scholar
  27. [27]
    K.W. Morton, Numerical Solution of Convection-Diffusion Pro´lems (Chapman & Hall, London, 1996).Google Scholar
  28. [28]
    H. Roos, M. Stynes and L. To´iska, Numerical Methods for Singularly Pertur´ed Differential Equations (Springer, Berlin, 1996).Google Scholar
  29. [29]
    [29] D. Rose, H. Shao and C. Henriquez, Discretization of anisotropic convection-diffusion equations, convective M-matrices and their iterative solution, to appear.Google Scholar
  30. [30]
    Y. Saad, Iterative Methods for Sparse Linear Systems (PWS Pu´lishing Company, Boston, MA, 1996).Google Scholar
  31. [31]
    A. Samarskii, Theory of Finite Differences (Mir, Moscow, 1977).Google Scholar
  32. [32]
    A. Schatz, An o´servation concerning Ritz-Galerkin methods with indefinite ´ilinear forms, Math. Comp. 28(205) (1974) 952–962.Google Scholar
  33. [33]
    R.E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (1972) 146–160.Google Scholar
  34. [34]
    F. Wang and J. Xu, A cross-wind ´lock iterative method for convection-dominated pro´lems, SIAM J. Sci. Comput. 21(2) (1999) 620–645.Google Scholar
  35. [35]
    J. Wang, Convergence analysis of multigrid algorithms for nonselfadjoint and indefinite elliptic pro´lems, SIAM J. Numer. Anal. 30(1) (1993) 275–285.Google Scholar
  36. [36]
    J. Xu, Theory of multilevel methods, Ph.D. thesis, Cornell University, Ithaca, NY (1989). AM Report 48, Department of Mathematics, Pennsilvania State University, University Park, PA.Google Scholar
  37. [37]
    J. Xu, Iterative methods ´y space decomposition and su´space correction, SIAM Review 34(4) (1992) 581–613.Google Scholar
  38. [38]
    J. Xu, A new class of iterative methods for nonselfadjoint or indefinite pro´lems, SIAM J. Numer. Anal. 29(2) (1992) 303–319.Google Scholar
  39. [39]
    J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal. 33(5) (1996) 1759–1777.Google Scholar
  40. [40]
    J. Xu, The EAFE scheme and CWS method for convection dominated pro´lems, in: Proc. of the 9th Internat. Symposium on Domain Decomposition Methods in Science and Engineering, eds. P. Bjørstad, M. Espedal and D. Keyes, Bergen, Norway, 1997 (Domain Decomposition Press) pp. 618–625.Google Scholar
  41. [41]
    J. Xu and X.-C. Cai, A preconditioned GMRES method for nonsymmetric or indefinite pro´lems, Math. Comp. 59(200) (1992) 311–319.Google Scholar
  42. [42]
    J. Xu and L. Zikatanov, A monotone finite element scheme for convection-diffusion equations, Math. Comp. 68(228) (1999) 1429–1446.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Hwanho Kim
    • 1
  • Jinchao Xu
    • 1
  • Ludmil Zikatanov
    • 1
  1. 1.Department of MathematicsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations