Journal of Mammalian Evolution

, Volume 4, Issue 4, pp 259–269

Chromosome Divergences Among American Marsupials and the Australian Affinities of the American Dromiciops

  • Angel E. Spotorno
  • Juan C. Marin
  • Marco Yévenes
  • Laura I. Walker
  • Raúl Fernández-Donoso
  • Juana Pincheira
  • M. Soledad Berríos
  • R. Eduardo Palma
Article

Abstract

To investigate the phylogenetic relationships of living marsupials, morphometric and G-banded chromosome analyses were made in the Chilean species Dromiciops gliroides (Microbiotheria) and Thylamys elegans (Didelphimorphia). Chromosome arm lengths and patterns of G-bands were compared in at least eight bone marrow metaphase spreads in six and nine specimens, respectively. They were contrasted with those published for another 11 American and Australian genera. Three of six autosomal pairs (A1, A3, and C2) were uniquely shared by Dromiciops and some Australian species, being different in shape and G-banded patterns from those with similar total sizes in Thylamys and other South American didelphoid karyotypes. Such chromosomal correspondences suggest the past occurrence of at least three pericentric inversions. A table of character states constructed from chromosomal G-band comparisons is presented, showing that cytogenetic data agree with Szalay's (1982) hypothesis on the affinities of the South American Dromiciops with Australian marsupials.

marsupials chromosomes G-bands C-bands phylogeny Dromiciops 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

LITERATURE CITED

  1. Carlini, A. A., Pascual, R., Reguero, M. A., Scillato-Yane, G. H., Tonni, E. P., and Vizcaino, S. F. (1990). The first Paleogene land placental mammals from Antarctica: Its paleoclimatic and paleobiogeographical bearing. Abstracts, Fourth International Congress of Systematic and Evolutionary Biology, University of Maryland, College Park.Google Scholar
  2. Chiarelli, B. A., Sarti-Chiarelli, M., and Shafer, D. A. (1972). Chromosome banding with trypsin. Mamm. Chrom. Newslett. 13: 44–45.Google Scholar
  3. Crisci, J., Cigliano, M. M., Morrone, J. J., and Roig-Juñent, S. (1991). Historical biogeography of southern South America. Syst. Zool. 40: 152–171.Google Scholar
  4. Crossen, P. E. (1972). The Crossen procedure. Mamm. Chrom. Newslett. 13: 40.Google Scholar
  5. Dyzenchauz, F. J., Barros, M. A., Kirsch, J. A. W., and Reig, O. A. (1993). Dromiciops australis, G-banding analysis reinforce its close association to Australian marsupials. In: Abstracts, VI International Theriological Congress, Sydney, Australia, p. 82.Google Scholar
  6. Gallardo, M. H. and Patterson, B. D. (1987). An additional 14-chromosome karyotype and sex-chromosome mosaicism in South American marsupials. In: Studies in Neotropical Mammalogy: Essays in Honor of Philip Hershkovitz, B. D. Patterson and R. L. Timm, eds., Fieldiana Zool. 39: 111–116.Google Scholar
  7. Gardner, A. L. (1993). Order Didelphimorphia. In: Mammal Species of the World: A Taxonomic and Geographic Reference, D. E. Wilson and D. M. Reeder, eds., pp. 15–23, Smithsonian Institution Press, Washington, DC.Google Scholar
  8. Hayman, D. L., and Martin, P. G. (1974). Mammalia I: Monotremata and Marsupialia, Vol. 4: Chordata 4. In: Animal Cytogenetics, B. John, ed., Gebrüder Borntraeger, Berlin and Stuttgart.Google Scholar
  9. Hayman, D. L., Moore, H. D. M., and Evans, E. P. (1988). Further evidence of novel sex differences in chiasma distribution in marsupials. Heredity 61: 455–458.Google Scholar
  10. Hershkovitz, P. (1992). Ankle bones: The Chilean opossum Dromiciops gliroides Thomas, and marsupial phylogeny. Bonn. Zool. Beit. 43: 181–213.Google Scholar
  11. Kirsch, J. A. W., Dickerman, A. W., Reig, O. A., and Springer, M. S. (1991). DNA hybridization evidence for the Australian affinity of the American marsupial. Dromiciops australis. Proc. Natl. Acad. Sc. USA 88: 10465–10469.Google Scholar
  12. Lee, M. R., and Elder, F. F. B. (1980). Yeast stimulation of bone marrow mitoses for cytogenetic investigations. Cytogenet. Cell Genet. 26: 36–40.Google Scholar
  13. Levan, A., Fredga, K., and Sandberg, A. (1964). Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.Google Scholar
  14. Luckett, W. P. (1994). Suprafamilial relationships within Marsupialia: Resolution and discordance from multidisciplinary data. J. Mammal. Evol. 2: 255–283.Google Scholar
  15. Marshall, L. G. (1978). Dromiciops australis. Mammal. Species 99: 1–5 (American Society of Mammalogists).Google Scholar
  16. Palma, R. E. (1997). Thylamys elegans. Mammal. Species 572: 1–4 (American Society of Mammalogists).Google Scholar
  17. Palma, R. E., and Yates, T. L. (1997). Phylogeny of southern South American mouse opossums (Thylamys, Didelphidae) based on allozyme and chromosomal data. Z. Säugetierk. 62: 1–15.Google Scholar
  18. Pascual, R., Archer, M., Ortiz, J. E., Prado, J. L., Godthelp, H. and Hand, S. J. (1992). First discovery of monotremes in South America. Nature 356: 704–706.Google Scholar
  19. Reig, O. A., Fernández-Donoso, R., and Spotorno, A. (1972). Further occurrence of a 2N = 14 chromosomes karyotype in two species of Chilean didelphoid marsupials. Z. Säugetierk. 37: 37–42.Google Scholar
  20. Reig, O. A., Gardner, A. L., Bianchi, N. O., and Patton, J. L. (1977). The chromosomes of the Didelphidae (Marsupialia) and their evolutionary significance. Biol. J. Linn. Soc. 9: 191–216.Google Scholar
  21. Retief, J. D., Krajewski, C., Westerman, M., Winkfein, R. J., and Dixon, G. H. (1995). Molecular phylogeny and evolution of marsupial protamine P1 genes. Proc. Roy. Soc. London B 259: 7–14.Google Scholar
  22. Rofe, R., and Hayman, D. (1985). G-banding evidence for a conserved complement in the Marsupialia. Cytogenet. Cell Genet. 39: 40–50.Google Scholar
  23. Seluja, G. A., Di Tomaso, M. V., Brum-Zorrilla, N., and Cardoso, H. (1984). Low karyotypic variation in two Didelphis (Marsupialia): Karyogram and chromosome banding analysis. J. Mammal. 65: 702–704.Google Scholar
  24. Sharman, G. B. (1972). The chromosomes of non-eutherian mammals. In: Cytotaxonomy and Vertebrate Evolution, A. B. Chiarelli and E. Capanna, eds., pp. 485–530, Academic Press, London, New York.Google Scholar
  25. Sharman, G. B. (1982). Karyotypic similarities between Dromiciops australis (Microbiotheriidae, Marsupialia) and some Australian marsupials. In: Carnivorous Marsupials, M. Archer, ed., pp. 711–714, Royal Society of New South Wales, Sydney, Australia.Google Scholar
  26. Spotorno, A., and Fernández-Donoso, R. (1970). The chromosomes of the “monito del monte,” Dromiciops australis Phil. Mamm. Chrom. Newslett. 12: 40–41.Google Scholar
  27. Spotorno, A., Brum, N., and Di Tomaso, M. (1987). Comparative cytogenetics of South American deer. Fieldiana Zool. 84: 473–483.Google Scholar
  28. Springer, M. S., Westerman, M., and Kirsch, J. A. W. (1994). Relationships among orders and families of marsupials based on 12S ribosomal DNA sequences and the timing of the marsupial radiation. J. Mammal. Evol. 2: 85–115.Google Scholar
  29. Sumner, A. T. (1972). A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75: 304–306.Google Scholar
  30. Szalay, F. S. (1982). A new appraisal of marsupial phylogeny and classification. In: Carnivorous Marsupials, M. Archer, ed., pp. 621–640, Royal Zoological Society, New South Wales, Sydney.Google Scholar
  31. Temple-Smith, P. (1987). Sperm ultrastructure and marsupial phylogeny. In: Possums and Opossums: Studies in Evolution, M. Archer, ed., pp. 171–193, Surrey Beatty & Sons, Chipping Norton.Google Scholar
  32. Woodburne, M. O., and Case, J. A. (1996). Dispersal, vicariance, and the late Cretaceous to early Tertiary land mammal biogeography from South America to Australia. J. Mammal. Evol. 3: 121–161.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Angel E. Spotorno
    • 1
  • Juan C. Marin
    • 1
  • Marco Yévenes
    • 1
  • Laura I. Walker
    • 1
  • Raúl Fernández-Donoso
    • 1
  • Juana Pincheira
    • 1
  • M. Soledad Berríos
    • 1
  • R. Eduardo Palma
    • 1
  1. 1.Instituto de Ciencias Biomédicas, Programa de Genética Humana, Facultad de MedicinaUniversidad de Chile, CasillaSantiago 7Chile
  2. 2.Departamento de Biología Celular y Genética, Facultad de MedicinaUniversidad de Chile, CasillaSantiago 7Chile

Personalised recommendations