Advertisement

Solar Physics

, Volume 217, Issue 1, pp 79–94 | Cite as

A New Method for Resolving the 180° Ambiguity in Solar Vector Magnetograms

  • Y.-J. Moon
  • Haimin Wang
  • Thomas J. Spirock
  • P.R. Goode
  • Y.D. Park
Article

Abstract

We present a new method to resolve the 180° ambiguity for solar vector magnetogram measurements. The basic assumption is that the magnetic shear angle (Δθ), which is defined as the difference between the azimuth components of observed and potential fields, approximately follows a normal distribution. The new method is composed of three steps. First, we apply the potential field method to determine the azimuthal components of the observed magnetic fields. Second, we resolve the ambiguity with a new criterion: −90°+ΔθmpleΔθle90°+Δθmp, where Δθmp is the most probable value of magnetic shear angle from its number distribution. Finally, to remove some localized field discontinuities, we use the criterion BtBmtge0, where Bt and Bmt are an observed transverse field and its mean value for a small surrounding region, respectively. For an illustration, we have applied the new ambiguity removal method (Uniform Shear Method) to a vector magnetogram which covers a highly sheared region near the polarity inversion line of NOAA AR 0039. As a result, we have found that the new ambiguity solution was successful and removed spatial discontinuities in the transverse vector fields produced in the magnetogram by the potential field method. It is also found that our solution to the ambiguity gives nearly the same results, for highly sheared vector magnetograms and vertical current density distributions, of NOAA AR 5747 and AR 6233 as those of other methods. The validity of the basic assumption for an approximate normal distribution is demonstrated by the number distributions of magnetic shear angle for the three active regions under consideration.

Keywords

Current Density Distribution Azimuthal Component Polarity Inversion Line Transverse Vector Polarity Inversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alissandrakis, C. E.: 1981, Astron. Astrophys. 100, 197.Google Scholar
  2. Ambastha, A., Hagyard, M. J., and West, E. A.: 1993, Solar Phys. 148, 277.Google Scholar
  3. Aly, J. J.: 1989, Solar Phys. 120, 19.Google Scholar
  4. de la Beaujardière, J.-F., Canfield, R. C., and Leka, K. D.: 1993, Astrophys. J. 411, 378.Google Scholar
  5. Canfield, R. C., de La Beaujardière, J.-F., Fan, Y., Leka, K. D., McClymont, A. N., Metcalf, T. R., Mickey, D. L., Wülser, J.-P., and Lites, B.: 1993, Astrophys. J. 411, 362.Google Scholar
  6. Chen, J., Wang, H., Zirin, H., and Guoxiang, A.: 1994, Solar Phys. 154, 261.Google Scholar
  7. Gary, G. A. and Démoulin, P.: 1995, Astrophys. J. 445, 982.Google Scholar
  8. Gary, G. A. and Hagyard, M. J: 1990, Solar Phys. 126, 21.Google Scholar
  9. Hagyard, M. J., Stark, B. A., and Venkatakrishnan, P.: 1999, Solar Phys. 184, 133.Google Scholar
  10. Hagyard, M. J., West, E. A., and Smith, J. E.: 1993, Solar Phys. 144, 141.Google Scholar
  11. Hagyard, M. J., Smith, Jr, J. B., Teuber, D., and West, E. A.: 1984, Solar Phys. 91, 115.Google Scholar
  12. Leka, K. D., Canfield, R. C., McClymont, A. N., de la Beaujardière, J. F., and Fan, Y.: 1993, Astrophys. J. 411, 370.Google Scholar
  13. McClymont, A. N., Jiao, L., and Mikić, Z.: 1997, Solar Phys. 174, 191.Google Scholar
  14. Metcalf, T. R.: 1994, Solar Phys. 155, 235.Google Scholar
  15. Moon, Y.-J., Yun, H. S., Lee, S. W., Kim, J.-H., Choe, G. S., Park, Y. D., Ai, G., Zhang, H. Q., and Fang, C.: 1999, Solar Phys. 184, 323.Google Scholar
  16. Moon, Y.-J., Yun, H. S., Choe, G. S., Park, Y. D., and Mickey, D. L.: 2000, J. Korean Astron. Soc. 33, 63.Google Scholar
  17. Moon, Y.-J., Choe, G. S., Yun, H. S., Park, Y. D., and Mickey, D. L.: 2002a, Astrophys. J. 568, 422.Google Scholar
  18. Moon, Y.-J., Wang, H., Spirock, T., and Park, Y. D.: 2002b, J. Korean Ast. Soc. 35, 143.Google Scholar
  19. Sakurai, T.: 1989, Space Sci. Rev. 51, 1.Google Scholar
  20. Schmidt, H. U. 1964, in W. N. Hess (ed.), Physics of Solar Flares, NASA SP-50, p. 107.Google Scholar
  21. Spirock, T. J., Yurchyshyn, V. B., and Wang, H.: 2002, Astrophys. J. 572, 1072.Google Scholar
  22. Teuber, D., Tandberg-Hanssen, E., and Hagyard, M. J.: 1977, Solar Phys. 53, 97.Google Scholar
  23. Wang, H.: 1992, Solar Phys. 140, 85.Google Scholar
  24. Wang, H.: 1997, Solar Phys. 174, 163.Google Scholar
  25. Wang, H., Ewell, M. W., Jr., Zirin, H., and Ai, G.: 1994, Astrophys. J. 424, 436.Google Scholar
  26. Wang, H., Spirock, T. J., Qiu, J., Ji, H., Yurchyshyn, V. B., Moon, Y.-J., Denker, C., and Goode, P. R.: 2002, Astrophys. J. 576, 497.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Y.-J. Moon
    • 1
    • 2
  • Haimin Wang
    • 1
  • Thomas J. Spirock
    • 1
  • P.R. Goode
    • 1
  • Y.D. Park
    • 2
  1. 1.Big Bear Solar ObservatoryNJITBig Bear CityU.S.A
  2. 2.Korea Astronomy Observatory, Whaamdong, Yuseong-guDaejeonKorea

Personalised recommendations