, Volume 14, Issue 6, pp 367–372 | Cite as

Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 6070 °C by Thermus and Bacillus spp

  • Heiko Feitkenhauer
  • Rudolf Müller
  • Herbert MAuml;rkl


Although polycyclic aromatic hydrocarbons (PAH) and alkanesare biodegradable at ambient temperature, in some cases low bioavailabilities are thereason for slow biodegradation. Considerably higher mass transfer rates and PAH solubilities and hence bioavailabilities can be obtained at higher temperatures. Mixed and pure cultures of aerobic, extreme thermophilic microorganisms (Bacillus spp., Thermus sp.) were used to degrade PAH compounds and PAH/alkane mixtures at 65 °C. The microorganismsused grew on hydrocarbons as sole carbon and energy source. Optimal growthtemperatures were in the range of 60–70 °C at pH values of 6–7. The conversion of PAH with 3–5 rings (acenaphthene, fluoranthene, pyrene, benzo[e]pyrene) was demonstrated. Efficient PAH biodegradation required a second, degradable liquid phase. Thermus brockii Hamburg metabolized up to 40 mg (l h)-1 pyrene and 1000 mg(1 h)-1 hexadecane at 70 °C. Specific growth rates of 0.43 h-1 were measured for this strain with hexadecane/pyrene mixtures as the sole carbon and energy source in a 2-liter stirred bioreactor. About 0.7 g cell dry weight were formed from 1 g hydrocarbon. The experiments demonstrate the feasibility and efficiency of extreme thermophilic PAH and alkane biodegradation.

aerobe bioavailability biodegradation polycyclic aromatic hydrocarbons alkanes extreme thermophilic microorganisms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey JE & Ollis DF (1986) Biochemical Engineering Fundamentals, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  2. Birman I & Alexander M (1996) Optimizing biodegradation of phenanthrene dissolved in nonaqueous-phase liquids. Appl. Microbiol. Biotech. 45(1–2): 267–272Google Scholar
  3. Bohl W (1991) Technische Strömungslehre 9 edn (pp 288–289). Vogel Verlag, WürzburgGoogle Scholar
  4. Beffa T, Blanc M, Lyon PF, Vogt G, Marchiani M, Fischer JL & Aragano M (1996) Isolation of Thermus strains from hot composts (60–80 °C). Appl. Environ. Microbiol. 62: 1723–1727Google Scholar
  5. Chen C-I & Taylor RT (1997) Thermophilic biodegradation of BTEX by two consortia of anaerobic bacteria. Appl. Microbiol. Biotechnol. 48: 121–128Google Scholar
  6. Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3: 351–368Google Scholar
  7. Cuno M (1996) Kinetische Untersuchungen zum biologischen Abbau von Mineralölen und polyzyklischen aromatischen Kohlenwasserstoffen. Ph.D. thesis. Technical University of Berlin, GermanyGoogle Scholar
  8. Feitkenhauer H (1998) Biodegradation of aliphatic and aromatic hydrocarbon at high temperatures: Kinetics and applications. Ph.D. thesis. Technical University of Hamburg-Harburg, GermanyGoogle Scholar
  9. Feitkenhauer H, Schnicke S, M% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaie% aacaWFbbaajqwaGcqaamXvP5wqSX2qVrwzqf2zLnharyGqHrxyUDga% iuaacGaGaIhaC8VFBlaaleqaaaaa!442D!ller R & Märkl H (2001) Determination of the kinetic parameters of the phenol-degrading thermophile Bacillus themoleovorans sp. A2. Appl. Microbiol. Biotechnol. 57: 744–750Google Scholar
  10. Gonzales JM, Kato C & Horikoshi K (1996) Culturability and survival of an extreme thermophile isolated from deep sea hydrothermal vents. Arch. Mirobiol. 166: 64–67Google Scholar
  11. Griesbaum K (1989) Hydrocarbons. In: Elvers B, Hawkins S, Ravenscroft M & Schulz G (Eds) Ullmann's encyclopedia of industrial chemistry. Vol A 13, 5th edn (pp 227–275). VCH Verlag, WeinheimGoogle Scholar
  12. Hamer G, Al-Awadhi N & Egli Th (1989) Biodegradation of petrochemical industry pollutants at elevated temperatures. DECHEMA Biotechnol. Conf. (3): 823–827Google Scholar
  13. Hebenbrock S (1997) Isolation and characterization of thermophilic microorganisms ant their application for the microbial degradation of naphthalene and benzoic acid. (In German: Isolierung und Characterisierung von thermophilen Mikroorganismen und deren Einsatz zum mikrobiellen Abbau von Naphthalin und Benzoesäure). Ph.D. thesis. Technical University of Hamburg-Harburg, GermanyGoogle Scholar
  14. IUPAC Solubility data series (1989) Hydrocarbons with water and sea water, Vol 38, Part II. International Union of Pure and Applied Chemistry, Pergamon PressGoogle Scholar
  15. Kanaly RA, Bartha R, Watanabe K & Harayama S (2001) Enhanced mineralization of benzo[a]pyrene in the presence of nonaqueous phase liquids. Environ. Tox. Chem. 20(3): 498–501Google Scholar
  16. Kato T, Haruki M, Morikawa M & Kanaya S (2001) Isolation and characterization of long-chain-alkane degrading Bacillus thermoleovorans from deep subterranean petroleum reservoirs. Appl. Microbiol. Biotech. 91(1): 64–70Google Scholar
  17. Kornmüller A & Wiesmann U (1999) Continuous ozonation of polycyclic aromatic hydrocarbons in oil/water-emulsions and biodegradation of oxidation products. Wat. Sci. Tech. 40(4–5): 107–114Google Scholar
  18. Liu D (1985) Biodegradation of petroleum via fermentation. In: Cheremisinoff PN and Ouellette RP (Eds) Biotechnology (pp 103–134). Technomic Publishing, LancasterGoogle Scholar
  19. Mateles RI, Baruah JN & Tannenbaum SR (1967) Growth of a thermohilic bacterium on hydrocarbons: A new source of single cell proteins. Science 157: 1322–1323Google Scholar
  20. Mutzel A, Reinscheid UM, Antranikian G & Müller R (1996) Isolation and characterization of a thermophilic Bacillus strain, that degrades phenol and cresols as sole carbon and energy source at 70 °C. Appl. Microbiol. Biotech. 46: 593–596Google Scholar
  21. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS & Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: Descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans. Internat. J. System. Evolut. Microbiol. 51(2): 433–446Google Scholar
  22. Perry JJ (1985) Isolation and characterization of thermophilic, hydrocarbon utilizing bacteria. Ad. Aquatic Microbiol. 3: 109–139Google Scholar
  23. Phillips WE & Perry JJ (1976) Thermomicrobium fosteri sp. nov., a hydrocarbon utilizing obligate thermophile. Internat. J. System. Bacteriol. 26: 220–225Google Scholar
  24. Samanta SK, Singh OV & Jain RK (2002) Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation. Trends in Biotech. 20(6): 243–248Google Scholar
  25. Shimura M, Mukerjee-Dhar G, Kimbara K, Nagato H, Kiyohara H & Hatta T (1999) Isolation and characcterization of a thermophilic bacillus sp. JF8 capable of degrading polychlorinated biphenyls and naphthalene. FEMS Microbiol. Lett. 178: 87–93Google Scholar
  26. Sorkoh A, Ibrahim AS, Ghanoum MA & Radwan SS (1993) High-temperature hydrocarbon degradation by Bacillus stearothermophilus from oil polluted Kuwaiti desert. Appl. Microbiol. Biotech. 39(1): 123–126Google Scholar
  27. Stehr J, Müller T, Svensson K, Kamnerdpetch C & Scheper T (2001) Basic examinations on chemical pre-oxidation by ozone for enhancing bioremediation of phenanthrene contaminated soils. Appl. Microbiol. Biotech. 57(5–6): 803–809Google Scholar
  28. Süßmuth R, Eberspächer J, Haag R & Springer W (1987) Biochemisch-mikrobiologisches Praktikum (pp 55–60). Thieme Verlag, StuttgartGoogle Scholar
  29. Tiehm A, Stieber M, Werner P & Frimmel FH (1997) Surfactant-enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil. Environ. Sci. Tech. 31(9): 2570–2576Google Scholar
  30. Wilhelms A, Larter SR, Head I, Farrimond P, di-Primio R & Zwach R (2001) Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature 411(6841): 1034–1037Google Scholar
  31. Wilichowski M (1994) Aufarbeitung mineralölkontaminierter Böden durch Bodenwäsche und Flotation. Ph.D. thesis. Technical University of Hamburg-Harburg, GermanyGoogle Scholar
  32. Yaws CL, Nijhawan S & Li KY (1995) Diffusion coefficients in water. In: Yaws C (Ed) Handbook of transport property data (pp 141–168). Gulf Publishing CompanyGoogle Scholar
  33. Zarilla K & Perry JJ (1984) Thermoleophilum album gen-nov and sp-nov, a bacterium obligate for thermophily and normal-alkane substrates. Arch. Microbiol. 137(4): 286–290Google Scholar
  34. Zarilla K & Perry JJ (1987) Bacillus thermoleovorans, sp. nov., a species of obligately thermophilic hydrocarbon utilizing endospore forming bacteria. System. Appl. Microbiol. 9: 258–264Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Heiko Feitkenhauer
    • 1
  • Rudolf Müller
    • 2
  • Herbert MAuml;rkl
    • 3
  1. 1.Laboratory of Chemical Engineering and Industrial ChemistryETH Zürich, HönggerbergZürichSwitzerland
  2. 2.Institute of Technical BiochemistryTechnical University of Hamburg-HarburgHamburgGermany
  3. 3.Institute of Bioprocess and Biochemical EngineeringTechnical University of Hamburg-HarburgHamburgGermany

Personalised recommendations