Studia Logica

, Volume 75, Issue 2, pp 165–182 | Cite as

Game Logic - An Overview

  • Marc Pauly
  • Rohit Parikh


Game Logic is a modal logic which extends Propositional Dynamic Logic by generalising its semantics and adding a new operator to the language. The logic can be used to reason about determined 2-player games. We present an overview of meta-theoretic results regarding this logic, also covering the algebraic version of the logic known as Game Algebra.

modal logic propositional dynamic logic game theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Back, R.-J., and J. Von Wright, Refinement Calculus - A systematic introduction, Springer, 1998.Google Scholar
  2. [2]
    Baeten, J., and W. Weijland, Process Algebra, Cambridge University Press, 1990.Google Scholar
  3. [3]
    Berwanger, D., ‘Game Logic is Strong Enough for Parity Games’, Studia Logica, 75(2):205-219, 2003.Google Scholar
  4. [4]
    Van Benthem, J., Modal Correspondence Theory, PhD thesis, University of Amsterdam, 1976.Google Scholar
  5. [5]
    Van Benthem, J., ‘Program constructions that are safe for bisimulation’, Studia Logica, 60(2):311-330, 1998.Google Scholar
  6. [6]
    Van Benthem, J., ‘Logic games are complete for game logics’, Studia Logica, 75(2):183-203, 2003.Google Scholar
  7. [7]
    Van Benthem, J., Logic in Games, Lecture notes, unpublished.Google Scholar
  8. [8]
    Blackburn, P., M. De Rijke, and Y. Venema, Modal Logic, Cambridge University Press, 2001.Google Scholar
  9. [9]
    Bradfield, J., and C. Stirling, ‘Modal logics and mu-calculi: an introduction’, in J. Bergstra, A. Ponse, and S. Smolka, (eds.), Handbook of Process Algebra, Elsevier, 2001.Google Scholar
  10. [10]
    Brams, S., and A. Taylor, Fair Division: From Cake-cutting to Dispute Resolution, Cambridge University Press, 1996.Google Scholar
  11. [11]
    Chellas, B., Modal Logic - An Introduction, Cambridge University Press, 1980.Google Scholar
  12. [12]
    Fokkink, W., Introduction to Process Algebra, Springer, 2000.Google Scholar
  13. [13]
    Goranko, V., ‘The Basic Algebra of Game Equivalences’, Studia Logica, 75(2):221-238, 2003.Google Scholar
  14. [14]
    Harel, D., ‘Dynamic logic’, in D. Gabbay and F. Guenthner, (eds.), Handbook of Philosophical Logic, volume II, Kluwer, 1984.Google Scholar
  15. [15]
    Harel, D., D. Kozen, and J. Tiuryn, Dynamic Logic, MIT Press, 2000.Google Scholar
  16. [16]
    Kozen, D., ‘Results on the propositional μ-calculus’, Theoretical Computer Science, 27:333-354, 1983.Google Scholar
  17. [17]
    Parikh, R., ‘Propositional logics of programs: New directions’, in M. Karpinski, (ed.), Foundations of Computation Theory, LNCS 158, pp. 347-359, Springer, 1983.Google Scholar
  18. [18]
    Parikh, R., ‘The logic of games and its applications’, in M. Karpinski and J. van Leeuwen, (eds.), Topics in the Theory of Computation, Annals of Discrete Mathematics 24, Elsevier, 1985.Google Scholar
  19. [19]
    Pauly, M., ‘From programs to games: Invariance and safety for bisimulation’, in P. Clote and H. Schwichtenberg, (eds.), Computer Science Logic, LNCS 1862, Springer, 2000.Google Scholar
  20. [20]
    Pauly, M., ‘Game logic for game theorists’, Report INS-R0017, CWI, 2000.Google Scholar
  21. [21]
    Pauly, M., ‘An introduction to game logic’, in M. Faller, S. Kaufmann, and M. Pauly, (eds.), Formalizing the Dynamics of Information, CSLI, 2000.Google Scholar
  22. [22]
    Pauly, M., Logic for Social Software, PhD thesis, University of Amsterdam, 2001.Google Scholar
  23. [23]
    Venema, Y., ‘Representing Game Algebras’, Studia Logica, 75(2):239-256, 2003.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Marc Pauly
    • 1
  • Rohit Parikh
    • 2
  1. 1.IRITUniversité Paul SabatierToulouse cedex 4
  2. 2.Department of Computer ScienceCUNY Graduate CenterNew York

Personalised recommendations