Journal of Mammalian Evolution

, Volume 4, Issue 1, pp 53–73 | Cite as

Mitochondrial DNA Phylogeography and Comparative Cytogenetics of the Springhare, Pedetes capensis (Mammalia: Rodentia)

  • C. A. Matthee
  • T. J. Robinson


Variation in mitochondrial DNA (mtDNA) was used together with comparative cytogenetics to examine the evolutionary history and taxonomic status of an African hystricomorphous rodent, the springhare Pedetes capensis. The mtDNA phylogeographic structure showed that the majority of the southern African populations (P. c. capensis) are characterized by unique but closely related maternal lineages. Based on restriction endonuclease fragment analysis, the east African populations (P. c. surdaster) appear more structured and are distinguished from those in southern Africa by an average sequence divergence of 5.52% (±1.4%). This marked divergence is concordant with results of the cytogenetic study. Specimens from southern Africa have 2n = 38, and those from east Africa 2n = 40. The change in diploid number is due to a single centric fusion. It is suggested that the closure of the Brachystegia or “miombo” woodland (20,000–10,000 B.P.), which delimits contemporary springhare ranges, may have been too recent to account for the accumulated genetic differences that distinguish these taxa. While rifting and associated habitat changes in east Africa can be invoked to explain genetic structure in this region, the southern African springhare populations, which have a high incidence of locality-specific haplotypes, show a shallow phylogeographic structure, in keeping with a relatively recent range expansion from smaller source populations. Given the magnitude of genetic, morphological, and ethological differences between the two geographic isolates, we believe that there is strong support for the elevation of the east African and southern African springhare populations to full species status, thus supporting earlier taxonomic treatments of this rodent.

springhare rodent mtDNA population structure chromosomes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amos, B., and Hoelzel, A. R. (1991). Long-term preservation of whale skin for DNA analysis. Rep. Int. Whaling Comm. (Spec. Issue) 13: 99–104.Google Scholar
  2. Avise, J. C. (1989). Gene trees and organismal histories: A phylogenetic approach to population biology. Evolution 43: 1192–1208.Google Scholar
  3. Avise, J. C. (1994). Molecular Markers, Natural History and Evolution, Chapman and Hall, London and New York.Google Scholar
  4. Avise, J. C., and Ball, R. M. (1990). Principles of genealogical concordance in species concepts and biological taxonomy. Oxford Surv. Evol. Biol. 7: 45–67.Google Scholar
  5. Avise, J. C., Giblin-Davidson, C., Laerm, J., Patton, J. C., and Lansman, R. A. (1979a). Mitochondrial DNA clones and matriarchal phylogeny within and among geographic populations of the pocket gopher, Geomys pinetis. Proc. Natl. Acad. Sci. U.S.A. 76: 6694–6698.Google Scholar
  6. Avise, J. C., Lansman, R. A., and Shade, R. O. (1979b). The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. I. Population structure and evolution in the genus Peromyscus. Genetics 92: 279–295.Google Scholar
  7. Avise, J. C., Bowen, B. W., and Lamb, T. (1989). DNA fingerprints from hypervariable mitochondrial genotypes. Mol. Biol. Evol. 6: 258–269.Google Scholar
  8. Ball, R. M., Freeman, S., James, F. C., Bermingham, E., and Avise, J. C. (1988). Phylogeographic population structure of red-winged blackbirds assessed by mitochondrial DNA. Proc. Natl. Acad. Sci. U.S.A. 85: 1558–1562.Google Scholar
  9. Brown, L. H., Urban, E. K., and Newman, K. (1982). The Birds of Africa, Vol. 1, Academic Press, London.Google Scholar
  10. Brown, W. M. (1980). Polymorphism in mitochondrial DNA of humans. Proc. Natl. Acad. Sci. U.S.A. 77: 3605–3609.Google Scholar
  11. Brown, W. M. (1983). Evolution of animal mitochondrial DNA. In: Evolution of Genes and Proteins, M. Nei and R. K. Koehn, eds., pp. 63–88, Sinauer, Sunderland.Google Scholar
  12. Bush, G. L., Case, S. M., Wilson, A. C., and Patton, J. L. (1977). Rapid speciation and chromosomal evolution in mammals. Proc. Natl. Acad. Sci. U.S.A. 74: 3942–3946.Google Scholar
  13. Chesser, R. K. (1983). Isolation by distance: relationship to the management of genetic resources. In: Genetics and Conservation, C. M. Schonewald-Cox, S. M. Chambers, B. MacBryde, and L. Thomas, eds., pp. 66–77, Benjamin/Cummings, London.Google Scholar
  14. Coe, M. J., and Skinner, J. D. (1993). Connections, disjunctions and endemism in the eastern and southern African mammal faunas. Trans. R. Soc. S. Afr. 48: 233–255.Google Scholar
  15. Crandall, K. A., and Templeton, A. R. (1993). Empirical tests of some predictions from coalescent theroy with applications to intraspecific phylogeny reconstruction. Genetics 134: 959–969.Google Scholar
  16. Crandall, K. A., Templeton, A. R., and Sing, C. F. (1994). Intraspecific phylogenetics: problems and solutions. In: Models in Phylogeny Reconstruction, R. W. Scotland, D. J. Siebert, and D. M. Williams, eds., pp. 273–279, Claredon Press, Oxford.Google Scholar
  17. Cronin, M. A., Amstrup, S. C., and Garner, G. W. (1991). Interspecific and intraspecific mitochondrial DNA variation in North American bears (Ursus). Can. J. Zool. 69: 2985–2992.Google Scholar
  18. Da Silva, M. N. F., and Patton, J. L. (1993). Amazonian phylogeography: mtDNA sequence variation in arboreal echimyid rodents (Caviomorpha). Mol. Phyl. Evol. 2: 243–255.Google Scholar
  19. Davies, C. (1982). The Recent and Fossil Affinities of the Genus Pedetes (Mammalia: Rodentia), Doctor of Philosophy thesis, St. Peter's College, Oxford.Google Scholar
  20. Deacon, H. J., and Thackeray, J. F. (1983). Late Pleistocene environmental changes and implications for archaeological records in southern Africa. In: Proceedings of SASQUA International Symposium, J. C. Vogel, ed., pp. 375–390, AA Balkema, Rotterdam.Google Scholar
  21. De Graaff, G. (1981). Sciuromorpha. In: The Rodents of Southern Africa, pp. 39–43, Butterworths Press, Durban.Google Scholar
  22. Dieterlen, F. (1993). Family Pedetidae. In: Mammal Species of the World: A Taxonomic and Geographic Reference, 2nd ed., D. E. Wilson and D. M. Reeder, eds., p. 759, Smithsonian Institution Press, Washington, DC.Google Scholar
  23. Dowling, T. E., Moritz, C., and Palmer, J. D. (1990). Nucleic acids II: Restriction site analysis. In: Molecular Systematics, D. M. Hillis and C. Moritz, eds., pp. 250–317, Sinauer, Sunderland, MA.Google Scholar
  24. Eisenberg, J. F. (1981). The Mammalian Radiations: An Analysis of Trends in Evolution, Adaptation, and Behaviour, Athlone Press, London.Google Scholar
  25. Ellerman, J. R., Morrison-Scott, T. C. S., and Hayman, R. W. (1953). Family Pedetidae. In: Southern African Mammals 1758 to 1951: A Reclassification, pp. 251–252, British Museum, London.Google Scholar
  26. Feinberg, A. P., and Vogelstein, B. (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132: 6–13.Google Scholar
  27. Freitag, S., and Robinson, T. J. (1993). Phylogeographic patterns in the mitochondrial DNA of the ostrich (Struthio camelus). Auk 110: 614–622.Google Scholar
  28. Hamilton, A. C. (1976). The significance of patterns of distribution shown by forest plants and animals in tropical Africa for the reconstruction of palaeoenvironments: A review. Palaeoecol. Africa 9: 63–97.Google Scholar
  29. Hamilton, A. C. (1982). Environmental History of East Africa. A Study of the Quaternary, Academic Press, London.Google Scholar
  30. Hayes, J. P., and Harrison, R. G. (1992). Variation in mitochondrial DNA and the biogeographic history of woodrats (Neotoma) of the eastern United States. Syst. Biol. 41: 331–344.Google Scholar
  31. Hillis, D. M., and Huelsenbeck, J. P. (1992). Signal, noise, and reliability in molecular phylogenetic analysis. J. Hered. 13: 189–195.Google Scholar
  32. Hillis, D. M., and Moritz, C. (eds.) (1990). Molecular Systematics, Sinauer Associates, Sunderland.Google Scholar
  33. Hollister, N. (1919). East African mammals in the United States National Museum. II Rodentia, Lagomorpha and Tubulidentata. Bull. U.S. Nat. Mus 99: 1–184.Google Scholar
  34. Honeycutt, R. L., Edwards, S. V., Nelson, K., and Nevo, E. (1987). Mitochondrial DNA variation and the phylogeny of African mole rats (Rodentia: Bathyergidae). Syst. Zool. 36: 280–292.Google Scholar
  35. Hsu, T. C., and Benirschke, K. (1977). An Atlas of Mammalian Chromosomes, Vol. 10, Folio 456, Springer-Verlag, New York.Google Scholar
  36. Jaarola, M., and Tegelström, H. (1995). Colonization history of north European field voles (Microtus agrestis) revealed by mitochondrial DNA. Mol. Ecol. 4: 299–310.Google Scholar
  37. King, M. (1993). Species Evolution: The Role of Chromosome Change, Cambridge University Press, Cambridge.Google Scholar
  38. Kingdon, J. (1971). East African Mammals: An Atlas of Evolution in Africa, Vol. I, Academic Press, London.Google Scholar
  39. Kingdon, J. (1990). Island Africa: The Evolution of Africa's Rare Animals and Plants, Collins, London.Google Scholar
  40. Lansman, R. A., Shade, R. O., Shapira, J. F., and Avise, J. C. (1981). The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations: III techniques and potential applications. J. Mol. Evol. 17: 214–226.Google Scholar
  41. Lansman, R., A. Avise, J. C., Aquadro, C. F., Shapira, J. F., and Daniel, S. W. (1983). Extensive genetic variation in mitochondrial DNA's among geographic populations of the deer mouse, Peromyscus maniculatus. Evolution 37: 1–16.Google Scholar
  42. Luckett, W. P., and Hartenberger, J.-L. (eds.) (1985). Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis. Plenum Press, New York.Google Scholar
  43. MacNeil, D., and Strobeck, C. (1987). Evolutionary relationships among colonies of Columbian ground squirrels as shown by mitochondrial DNA. Evolution 41: 873–881.Google Scholar
  44. Matthee, C. A., and Robinson, T. J. (1996). Mitochondrial DNA differentiation among geographical populations of Pronolagus rupestris, Smith's red rock rabbit (Mammalis: Lagomorpha). Heredity 76: 514–523.Google Scholar
  45. Matthee, C. A., and Robinson, T. J. (1997). Molecular phylogeny of the springhare, Pedetes capensis, based on mitochondrial DNA sequences. Mol. Biol. Evol. 14: 20–29.Google Scholar
  46. McKnight, M. L. (1995). Mitochondrial DNA phylogeography of Perognathus amplus and Perognathus longimembris (Rodentia: Heteromyidae): A possible mammalian ring species. Evolution 49: 816–826.Google Scholar
  47. McMillan, W. O., and Bermingham, E. (1996). The phylogeographic pattern of mitochondrial DNA variation in the Dall's porpoise Phocoenoides dalli. Mol. Ecol. 5: 47–61.Google Scholar
  48. Meester, J. A. J., Rautenbach, I. L., Dippenaar, N. J., and Baker, C. M. (1986). Classification of Southern African Mammals, Trans. Mus. Monogr. 5, Pretoria.Google Scholar
  49. Misonne, X. (1974). Rodentia. In: The Mammals of Africa: An Identification Manual, J. Meester and H. W. Setzer, eds., p. 8, Smithsonian Institution Press, Washington, DC.Google Scholar
  50. Nei, M. (1987). Evolutionary changes of nucleotide sequences. In: Molecular Evolutionary Genetics, pp. 64–110, Columbia University Press, New York.Google Scholar
  51. Nei, M., and Miller, J. C. (1990). A simple method for estimating average number of nucleotide substitutions within and between populations from restriction fragment data. Genetics 125: 873–879.Google Scholar
  52. Nei, M., and Tajima, F. (1981). DNA polymorphism detectable by restriction endonucleases. Genetics 97: 145–163.Google Scholar
  53. Phillips, C. A. (1994). Geographic distribution of mitochondrial DNA variants and historical biogeography of the spotted salamander. Ambystoma maculatum. Evolution 48: 597–607.Google Scholar
  54. Plante, Y., Boag, P.T., and White, B. N. (1989). Macrogeographic variation in mitochondrial DNA of meadow voles (Microtus pennsylvanicus). Can. J. Zool. 67: 158–166.Google Scholar
  55. Quennell, A. M. (1982). Rift Valleys, Afro-Arabian, Hutchinson Ross, Philadelphia.Google Scholar
  56. Riddle, B. R., and Honeycutt, R. L. (1990). Historical biogeography in north American arid regions: An approach using mitochondrial DNA phylogeny in grasshopper mice (genus Onychomys). Evolution 44: 1–15.Google Scholar
  57. Roberts, A. (1951). Pedetidae. In: The Mammals of South Africa, R. Bigalke, V. Fitzsimons, and D. E. Malan, eds., pp. 350–352, Trustees of ‘The Mammals of South Africa’ book fund, Johannesburg.Google Scholar
  58. Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.Google Scholar
  59. Slatkin, M. (1987). Gene flow and the geographic structure of natural populations. Science 236: 787–792.Google Scholar
  60. Smithers, R. H. N. (1968). Family Pedetidae. In: A Check List and Atlas of the Mammals of Botswana, p. 30, Variprint, Salisbury.Google Scholar
  61. Smithers, R. H. N. (1983). The Mammals of the Southern African Subregion, University of Pretoria, Pretoria.Google Scholar
  62. Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–517.Google Scholar
  63. Sumner, A. T. (1972). A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75: 304–306.Google Scholar
  64. Swofford, D. L. (1993). PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1.2d5, Illinois Natural History Survey, Champaign.Google Scholar
  65. Thackeray, J. F. (1987). Late Quaternary environmental changes inferred from small mammalian fauna, southern Africa. Climatic Change 10: 285–305.Google Scholar
  66. Thomas, O. (1902). Pedetes. Ann. Mag. Nat. Hist. 7: 440.Google Scholar
  67. Verdcourt, B. (1969). The arid corridor between north-east and south-west areas of Africa. Palaeoecol. Africa 4: 140–144.Google Scholar
  68. Walker, E. P. (1975). Mammals of the World, 3rd. ed., J. L. Paradiso ed., p. 755, John Hopkins University Press, Baltimore.Google Scholar
  69. Walton, C. (1984). Reader's Digest Atlas of Southern Africa, J. Bartholomew & Son, Edinburgh.Google Scholar
  70. Wilson, A. C., Bush, G. L. Case, S. M., and King, M. (1975). Social structuring of mammalian populations and rate of chromosomal evolution. Proc. Natl. Acad. Sci. U.S.A. 72: 5061–5065.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • C. A. Matthee
    • 1
  • T. J. Robinson
    • 1
  1. 1.Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations