Oxidation of Metals

, Volume 60, Issue 5–6, pp 393–408 | Cite as

Oxidation-Rate Excursions During the Oxidation of Copper in Gaseous Environments at Moderate Temperatures

  • Z. Feng
  • C. R. Marks
  • A. Barkatt
Article

Abstract

The kinetics of oxidation of copper powders in oxygen and in dry and humid air was investigated using thermogravimetric analysis (TGA). The extent of oxidation grew linearly with time until the weight-based thickness of the oxide film reached 0.13–1.22 nm, depending on the temperature. Between 30 and 90°C there was little difference between the kinetic curves observed in air and in oxygen, respectively. Higher humidity of the air resulted in an increased oxidation rate. Following the initial linear segment, the oxidation kinetics could be best described in terms of a logarithmic rate law between 30 and 45°C and in terms of a power law between 60 and 90°C. The activation energy for the initial linear stage was (44±2) kJ and for the subsequent oxidation (102±12) kJ. Delayed increases in oxidation rate were observed with a ca. 0.1-μm powder around 100°C, with a ca. 1-μm powder around 320°C, and with a < 10μm powder around 360°C. A three-stage model consisting of an initial linear stage, parabolic growth culminating in cracking of the oxide film, and subsequent re-start of the parabolic growth, gave good agreement with the experimental data. Whenever the powder is relatively uniform and the distribution of film-cracking times among the powder grains is narrow, e.g., within 23% of the median cracking time, an increase in the oxidation rate of the entire sample can be observed.

copper oxidation kinetics oxide films film cracking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    C. Wagner and K. Grunewald, Z. physikal. Chem. B 40, 455(1938).Google Scholar
  2. 2.
    R. F. Tylecote, J. Inst. Met. 78, 259(1950/1951).Google Scholar
  3. 3.
    A. Ronnquist and H. Fischmeister, J. Inst. Met. 89, 65(1960/1961).Google Scholar
  4. 4.
    S. Mrowec and A. Stoklosa, Bull. Acad. Polon. Sci. 18, 531(1970).Google Scholar
  5. 5.
    S. K. Roy, S. K. Bose, and S. C. Sircar, Oxid. Met. 35, 1(1991).Google Scholar
  6. 6.
    T. N. Rhodin, Jr., J. Am. Chem. Soc. 72, 5102(1950).Google Scholar
  7. 7.
    S. K. Roy and S. C. Sircar, Oxid. Met. 15, 9(1981).Google Scholar
  8. 8.
    R. F. Tylecote, J. Inst. Met. 81, 681(1952/1953).Google Scholar
  9. 9.
    R. F. Tylecote, Metallurgia 53, 191(1956).Google Scholar
  10. 10.
    D. W. Bridges, J. P. Baur, G. S. Baur, and W. M. Fassell, J. Electrochem. Soc. 103, 475(1957).Google Scholar
  11. 11.
    R. Haugsrud, J. Electrochem. Soc. 149, B14(2002).Google Scholar
  12. 12.
    H. Uhlig and R. Revie, Corrosion and Corrosion Control, (Wiley, New York, NY, 1985) p. 201.Google Scholar
  13. 13.
    Y. Z. Hu, R. Sharangpani, and S.-P. Tay, J. Electrochem. Soc. 148, G669(2001).Google Scholar
  14. 14.
    R. Guan, H. Hashimoto, and T. Yoshida, Acta Cryst. B40, 109(1984).Google Scholar
  15. 15.
    M. Lenglet and K. Kartouni, Rev. Metall. 90, 1638(1993).Google Scholar
  16. 16.
    A. M. Khoviv, I. N. Nazarenko, and A. A. Churikov, Inorg. Mat. 37, 473(2001).Google Scholar
  17. 17.
    N. B. Pilling and R. E. Bedworth, J. Inst. Met. 29, 529(1923).Google Scholar
  18. 18.
    N. Cabrera and N. F. Mott, Rept. Prog. Phys. 12, 263(1948–1949).Google Scholar
  19. 19.
    A. Yanase, H. Matsui, K. Tanaka, and H. Komiyama, Surf. Sci. 219, L601(1989).Google Scholar
  20. 20.
    P. Pascal, Nouveau Traite de Chimie Minerale, Vol. 1 (Masson et Cie., Paris, 1956) p. 633.Google Scholar
  21. 21.
    W. H. J. Vernon, J. Chem. Soc., 2273(1926).Google Scholar
  22. 22.
    R. J. Nika and P. M. Hall, IEEE Trans. Compon. Hybrids Manuf. Technol. CHMT-2, 412(1979).Google Scholar
  23. 23.
    S. Nakayama, A. Kimura, M. Shibata, S. Kuwabata, and T. Osakai, J. Electrochem. Soc. 148, B467(2001).Google Scholar
  24. 24.
    M. Hamalainen and I. Iivari, Suom. Kemistil. B 41, 37(1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Z. Feng
    • 1
  • C. R. Marks
    • 2
  • A. Barkatt
    • 3
  1. 1.The Catholic University of AmericaWashington, DC
  2. 2.Dominion Engineering, Inc.Reston
  3. 3.The Catholic University of AmericaWashington, DC

Personalised recommendations