Neurochemical Research

, Volume 22, Issue 1, pp 49–56 | Cite as

Degradation of Alzheimer's ß-Amyloid Protein by Human and Rat Brain Peptidases: Involvement of Insulin-Degrading Enzyme

  • J. R. McDermott
  • A. M. Gibson


We examined the degradation of Alzheimer's ß-amyloid protein (1–40) by soluble and synaptic membrane fractions from post mortem human and fresh rat brain using HPLC. Most of the activity at neutral pH was in the soluble fraction. The activity was thiol and metal dependent, with a similar inhibition profile to insulin-degrading enzyme. Immunoprecipitation of insulin-degrading enzyme from the human soluble fraction using a monoclonal antibody removed over 85% of the ß-amyloid protein degrading activity. Thus insulin-degrading enzyme is the main soluble ß-amyloid degrading enzyme at neutral pH in human brain. The highest ß-amyloid protein degrading activity in the soluble fractions occurred between pH 4–5, and this activity was inhibited by pepstatin, implicating an aspartyl protease. Synaptic membranes had much lower ß-amyloid protein degrading activity than the soluble fraction. EDTA (2mM) caused over 85% inhibition of the degrading activity but inhibitors of endopeptidases −24.11, −24.15, −24.16, angiotensin converting enzyme, aminopeptidases, and carboxypeptidases had little or no effect.

ß-amyloid protein Alzheimer's disease insulin-degrading enzyme human brain cathepsin D 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Glenner, G. G., and Wong, C. W. 1984. Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun. 112:1131–1135.Google Scholar
  2. 2.
    Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., and Beyreuther, K. 1985. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA 82:4245–4249.Google Scholar
  3. 3.
    Kang, J., Lemaire, H. G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grzeschik, K. H., Multhaup, G., Beyreuther, K., and Muller-Hill, B. 1987. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell surface receptor. Nature 325:733–736.Google Scholar
  4. 4.
    Goldgaber, D., Leman, M. I., McBride, O. W., Saffiotti, U., and Gadjusek, D. C. 1987. Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease. Science 235:877–880.Google Scholar
  5. 5.
    Shoji, M., Golde, T. E., Ghiso, J., Cheung, T. T., Estus, S., Shaffer, L., Cai, X.-D., McKay, D. M., Tintner, R., Frangione, B., and Younkin, S. G. 1992. Production of the Alzheimer amyloid β-protein by normal proteolytic processing. Science 258:126–129.Google Scholar
  6. 6.
    Haass, C., Hung, A. Y., Schlossmacher, M. G., Teplow, D. B., and Selkoe, D. J. 1993. β-amyloid peptide and a 3-kDa fragment are derived by distinct molecular mechanisms. J. Biol. Chem. 268:3021–3024.Google Scholar
  7. 7.
    Seubert, P., Vigo-Pelfrey, C., Esch, F., Lee, M., Dovey, H., Davis, D., Sinha, S., Schlossmacher, M., Whaley, J., Swindlehurst, C., McCormack, R., Wolfert, R., Selkoe, D., Lieberburg, I., and Schenk, D. 1992. Isolation and quantification of soluble Alzheimer's β-peptide from biological fluids. Nature 359:325–327.Google Scholar
  8. 8.
    Haass, C., Schlossmacher, M. G., Hung, A. Y., Vigo-Pelfrey, C., Mellon, A., Ostaszewski, B. L., Lieberburg, I., Koo, E. H., Schenk, D., Teplow, D. B., and Selkoe, D. J. 1992. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359:322–325.Google Scholar
  9. 9.
    Esch, F. S., Keim, P. S., Beattie, E. C., Blacker, R. W., Culwell, A. K., Oltersdorf, T., McClure, D., and Ward, P. J. 1990. Cleavage of amyloid β-peptide during constitutive processing of its precursor. Science 248:1122–1124.Google Scholar
  10. 10.
    Citron, M., Oltersdorf, T., Haass, C., McConlogue, L., Hung, A. Y., Seubert, P., Vigo-Pelfrey, C., Lieberburg, I., and Selkoe, D. J. 1992. Mutation of the β-amyloid precursor protein in familial Alzheimer's disease increases β-protein production. Nature 360:672–674.Google Scholar
  11. 11.
    Cai, X., Golde, T. E., and Younkin, S. G. 1993. Release of excess amyloid-β protein from a mutant amyloid-β protein precursor. Science 259:514–516.Google Scholar
  12. 12.
    Duckworth, W. C. 1988. Insulin degradation: mechanisms, products and significance. Endocrin. Rev. 9:319–345.Google Scholar
  13. 13.
    Kurochkin, I. V., and Goto, S. 1994. Alzheimer's β-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme. FEBS Lett. 345:33–37.Google Scholar
  14. 14.
    McDermott, J. R., and Gibson, A. M. 1995. Identification and characterization of central nervous system peptidase activities. Pages 281–295, in Smith A. I., (ed), Methods in Neurosciences, Vol 23: Peptidases and neuropeptide processing pp. 281–295. Academic Press, San Diego.Google Scholar
  15. 15.
    Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.Google Scholar
  16. 16.
    Duckworth, W. C., Heinemann, M., and Kitabchi, A. E. 1972. Purification of insulin specific protease by affinity chromatography. Proc. Natl. Acad. Sci. USA 69:3698–3702.Google Scholar
  17. 17.
    Jarrett, J. T., Berger, E. P., and Lansburg, P. T. 1993. The carboxy terminus of the β-amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 32:4693–4697.Google Scholar
  18. 18.
    Authier, F., Rachubinski, R. A., Posner, B. I., and Bergeron, J. J. M. 1994. Endosomal proteolysis of insulin by an acidic thiol metalloprotease unrelated to insulin degrading enzyme. J. Biol. Chem. 269:3010–3016.Google Scholar
  19. 19.
    Hardy, J., and Allsop, D. 1991. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol. Sci. 12:383–388.Google Scholar
  20. 20.
    Selkoe, D. J. 1994. Normal and abnormal biology of the β-amyloid precursor protein. Ann. Rev. Neurosci. 17:489–517.Google Scholar
  21. 21.
    Mullan, M., Crawford, F., Axelman, K., Houlden, H., Lilius, L., Winblad, B., and Lannfelt, L. 1992. A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of β-amyloid. Nature Genet. 1:345–347.Google Scholar
  22. 22.
    Axelman, K., Basun, H., Winblad, B., and Lannfelt, L. 1994. A large Swedish family with Alzheimer's disease with a codon 670/671 amyloid precursor protein mutation. Arch. Neurol. 51:1193–1197.Google Scholar
  23. 23.
    Howell, S., Nalbantoglu, J., and Crine, P. 1995. Neutral endopeptidase can hydrolyze β-amyloid(1–40) but shows no effect on β-amyloid precursor protein metabolism. Peptides 16:647–652.Google Scholar
  24. 24.
    Roher, A. E., Kasunic, T. C., Woods, A. S., Cotter, R. J., Ball, M. J., and Fridman, R. 1994. Proteolysis of Aß peptide from Alzheimer disease brain by gelatinase A. Biochem. Biophys. Res. Commun. 205:1755–1761.Google Scholar
  25. 25.
    Marks, N., Berg, M. J., Chi, L. M., Choi, J., Durrie, R., Swistok, J., Makofske, R. C., Danho, W., and Sapirstein, V. S. 1994. Hydrolysis of amyloid precursor protein-derived peptides by cysteine proteinases and extracts of rat brain clathrin-coated vesicles. Peptides 15:175–182.Google Scholar
  26. 26.
    Norstedt, C., Näslund, J., Tjernberg, L. O., Karlström, A. R., Thyberg, J., and Terenius, L. 1994. The Alzheimer Aß peptide develops protease resistance in association with its polymerization into fibrils. J. Biol. Chem. 269:30773–30776.Google Scholar
  27. 27.
    Bush, A. L., Pettingell, W. H., Paradis, M., and Tanzi, R. E. 1994. Modulation of Aß adhesiveness and secretase site cleavage by zinc. J. Biol. Chem. 269:12152–12158.Google Scholar
  28. 28.
    McDermott, J. R., and Gibson, A. M. 1991. The processing of Alzheimer A4/ß-amyloid protein precursor: identification of a human brain metallopeptidase which cleaves-Lys-Leu-in a model peptide. Biochem. Biophys. Res. Commun. 179:1148–1154.Google Scholar
  29. 29.
    Tagawa, K., Kunishita, T., Maruyama, K., Yoshikawa, K., Kominami, E., Tsuchiya, T., Suzuki, K., Tabira, T., Sugita, H., and Ishiura, S. 1991. Alzheimer's disease amyloid β-clipping enzyme (APP secretase): identification, purification and characterization of the enzyme. Biochem. Biophys. Res. Commun. 177:377–387.Google Scholar
  30. 30.
    Skidgel, R. A., Engelbrecht, S., Johnson, A. R., and Erdös, E. G. 1984. Hydrolysis of substance P and neurotensin by converting enzyme and neutral endopeptidase. Peptides 5:769–776.Google Scholar
  31. 31.
    Kenny, A. J., Bowes, M. A., Gees, N. S., and Matsas, R. 1985. Endopeptidase 24.11: a cell surface enzyme for metabolizing regulatory peptides. Biochem. Soc. Trans. 13:293–295.Google Scholar
  32. 32.
    Barelli, H., Vincent, J.-P., and Checler, F. 1993. Rat kidney endopeptidase 24.16. Eur. J. Biochem. 211:79–80.Google Scholar
  33. 33.
    Allholter, J. A., Hsieh, C.-L., Francke, U., and Roth, R. A. 1990. Insulin-degrading enzyme: stable expression of the human complementary DNA, characterization of its protein product, and chromosomal mapping of the human and mouse genes. Mol. Endocrinol. 4:1125–1135.Google Scholar
  34. 34.
    Baumeister, H., Müller, D., Rehbein, M., and Richter, D. 1993. The rat insulin-degrading enzyme: molecular cloning and characterization of tissue-specific transcripts. FEBS Lett. 317:250–254.Google Scholar
  35. 35.
    Kuo, W.-L., Gehm, B. D., Rosner, M. R., Li, W., and Keller, G. 1994. Inducible expression and cellular localization of insulin-degrading enzyme in a stably transfected cell line. J. Biol. Chem. 269:22599–22606.Google Scholar
  36. 36.
    Kuo, W.-L., Gehm, B. D., and Rosner, M. R. 1991. Regulation of insulin degradation: expression of an evolutionary conserved insulin-degrading enzyme increases degradation via an intracellular pathway. Mol. Endocrinol. 5:1467–1476.Google Scholar
  37. 37.
    Yokono, K., Roth, R. A., and Baba, S. 1982. Identification of insulin degrading enzyme on the surface of cultured human lymphocytes, rat hepatoma cells and primary cultures of rat hepatocytes. Endocrinology 111:1102–1108.Google Scholar
  38. 38.
    Fleig, W. E., Hoss, G., Nother-Fleig, B., and Ditschuneit, H. 1986. Insulin binding to cultured adult hepatocytes: effects of bacitracin and chloroquine on the nature of cell associated radioactivity. Biochem. J. 237:99–104.Google Scholar
  39. 39.
    Caro, J. F., Muller, G., and Gennon, J. A. 1982. Insulin processing by liver. J. Biol. Chem. 257:8459–8466.Google Scholar
  40. 40.
    Hamel, F. G., Posner, B. I., Bergeron, J. J. M., Frank, B. H., and Duckworth, W. C. 1988. Isolation of insulin degradation products from endosomes derived from intact rat liver. J. Biol. Chem. 263:6703–6708.Google Scholar
  41. 41.
    McDermott, J. R., and Gibson, A. M. 1996. Degradation of Alzheimer's β-amyloid protein by human cathepsin D. NeuroReport, 7: (in press).Google Scholar
  42. 42.
    Cataldo, A. M., Barnett, J. L., Berman, S. A., Li, J., Quarless, S., Bursztajn, S., Lippa, C., and Nixon, R. A. 1995. Gene expression and cellular content of cathepsin D in human neocortex: evidence for early upregulation of the endosomal-lysosomal system in pyramidal neurons in Alzheimer disease. Neuron 14:1–20.Google Scholar
  43. 43.
    Cataldo, A. M., Paskevich, P. A., Kominami, E., and Nixon, R. A. 1991. Lysosomal hydrolases of different classes are abnormally distributed in brains of patients with Alzheimer disease. Proc. Natl. Acad. Sci. USA. 88:10998–11002.Google Scholar
  44. 44.
    Schwagerl, A. L., Mohan, P. S., Cataldo, A. M., Vonsattel, J. P., Kowall, N. W., and Nixon, R. A. 1995. Elevated levels of the endosomal-lysosomal proteinase cathepsin D in cerebrospinal fluid in Alzheimer disease. J. Neurochem. 64:443–446.Google Scholar
  45. 45.
    Mantle, D., Falkous, G., Ishiura, S., Perry, R. H., and Perry, E. K. 1995. Comparison of cathepsin protease activities in brain tissue from normal cases and cases with Alzheimer's disease, Lewy body dementia, Parkinson's disease and Huntington's disease. J. Neurol. Sci. 131:65–70.Google Scholar
  46. 46.
    Turner, A. J., Hooper, N. M., and Kenny, A. J. 1987. Metabolism of neuropeptides. Pages 211–248, in Kenny, A. J. and Turner, A. J., (eds), Mammalian Ectoenzymes. Elsevier, Amsterdam.Google Scholar
  47. 47.
    Checler, F. 1993. Neuropeptide degrading peptidases. Pages 375–417, in Parvez, S. H., Naoi, M., Nagatsu, T., and Parvez, S. (eds), Methods in Neurotransmitters and Neuropeptide Research, Elsevier, Amsterdam.Google Scholar
  48. 48.
    Perera, I. K., Candy, J. M., Håkansson, P., Oakley, A. E., Brinkmalm, G., and Sundqvist, B. U. R. 1990. UV-laser-induced desorption mass spectrometry of insulin, substance P and A4 amyloid protein fragments from synthetic fibrillary aggregates. Rapid Commun. in Mass Spectrom. 4:527–532.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • J. R. McDermott
    • 1
  • A. M. Gibson
    • 1
  1. 1.MRC Neurochemical Pathology UnitNewcastle General HospitalNewcastle upon TyneUK

Personalised recommendations