Journal of Materials Science

, Volume 38, Issue 22, pp 4461–4470 | Cite as

Microrheology as a tool for high-throughput screening

  • V. Breedveld
  • D. J. Pine

Abstract

Microrheology can be used for high-throughput screening of the rheological properties of sample libraries of complex fluids. Two passive techniques are particularly suitable: video microscopy and diffusing-wave spectroscopy. The techniques complement each other very well and can be applied to samples that offer different experimental challenges. We offer a thorough analysis of the strengths and limitations of microrheology with the emphasis on high-throughput applications. To illustrate the potential of microrheology, results are presented for two representative cases: the rheological screening of aqueous solutions of a block copolypeptide library and the rheological phase diagram of a water/surfactant/salt system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Freundlich and W. Seifriz Zeitschrift für Physikalische Chemie 104 (1922) 233.Google Scholar
  2. 2.
    F. C. Mackintosh and C. F. Schmidt, Curr. Opin. Coll. Interf. Sci. 4 (1999) 300.Google Scholar
  3. 3.
    M. J. Solomon and Q. Lu, ibid. 6 (2001) 430.Google Scholar
  4. 4.
    A. Mukhopadhyay and S. Granick, ibid. 6 (2001) 423.Google Scholar
  5. 5.
    F. Ziemann, J. Radler and E. Sackmann, Biophys. J. 66(6) (1994) 2210.Google Scholar
  6. 6.
    F. Amblard, et al., Phys. Rev. Lett. 77(21) (1996) 4470.Google Scholar
  7. 7.
    A. R. Bausch, W. Moller and E. Sackmann, Biophys. J. 76(1) (1999) 573.Google Scholar
  8. 8.
    A. Ashkin, Proc. Nat. Acad. Sci. United States of America 94(10) (1997) 4853.Google Scholar
  9. 9.
    C. Mio and D. W. M. Marr, Adv. Mater. 12(12) (2000) 917.Google Scholar
  10. 10.
    B. Y. Du, et al., Langmuir 17(11) (2001) 3286.Google Scholar
  11. 11.
    R. E. Mahaffy, et al., Phys. Rev. Lett. 85(4) (2000) 880.Google Scholar
  12. 12.
    T. G. Mason and D. A. Weitz, ibid. 74(7) (1995) 1250.Google Scholar
  13. 13.
    A. J. Levine and T. C. Lubensky, ibid. 85(8) (2000) 1774.Google Scholar
  14. 14.
    B. Schnurr, et al., Macromol. 30(25) (1997) 7781.Google Scholar
  15. 15.
    T. G. Mason, et al., Phys. Rev. Lett. 79(17) (1997) 3282.Google Scholar
  16. 16.
    T. G. Mason, H. Gang and D. A. Weitz, J. Opt. Soc. Amer. a-Optics Image Sci. Vis. 14(1) (1997) 139.Google Scholar
  17. 17.
    J. Apgar, et al., Biophys. J. 79(2) (2000) 1095.Google Scholar
  18. 18.
    J. C. Crocker, et al., Phys. Rev. Lett. 85(4) (2000) 888.Google Scholar
  19. 19.
    M. T. Valentine, et al., Phys. Rev. E 64 (2001) 061506.Google Scholar
  20. 20.
    A. P. Nowak, et al., Nature 417(6887) (2002) 424.Google Scholar
  21. 21.
    B. R. Dasgupta, et al., Phys. Rev. E 65 (2002) 051505.Google Scholar
  22. 22.
    T. G. Mason, Rheol. Acta 39(4) (2000) 371.Google Scholar
  23. 23.
    S.G. J. M. Kluijtmans, G. H. Koenderink and A. P. Philipse, Phys. Rev. E 61(1) (2000) 626.Google Scholar
  24. 24.
    M. Keller, J. Schilling and E. Sackmann, Rev. Sci. Instr. 72(9) (2001) 3626.Google Scholar
  25. 25.
    J. C. Crocker and D. G. Grier, J. Coll. Interf. Sci. 179 (1996) 298.Google Scholar
  26. 26.
    M. T. Valentine, et al., Biophys. J. 80(1) (2001) 495a.Google Scholar
  27. 27.
    D. A. Weitz and D. J. Pine, in “Dynamic Light Scattering,” edited by W. Brown (Oxford University Press, New York, 1993) p. 652.Google Scholar
  28. 28.
    G. Maret, Curr. Opin. Coll. Interf. Sci. 2(3) (1997) 251.Google Scholar
  29. 29.
    T. J. Deming, Nature 390(6658) (1997) 386.Google Scholar
  30. 30.
    M. Tornblom, U. Henriksson and M. Ginley, J. Phys. Chem. 98(28) (1994) 7041.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • V. Breedveld
    • 1
  • D. J. Pine
    • 1
  1. 1.Department of Chemical Engineering & Materials Research LaboratoryUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations